Skip to main content
Log in

Mechanisms involved in pearlfish resistance to holothuroid toxins

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Holothuroids produce triterpenoid saponins that act as chemical defenses against predators and parasites. These saponins interact with sterols of the plasma membranes, inducing the formation of pores and then cell lysis. To avoid such harms from their own saponins, holothuroids present specific sterols in their tissues. Despite the noxious cytotoxic effect of their chemical defenses, holothuroids host various associates that display specific adaptations to resist to saponin toxicity. Among them, symbiotic carapid fishes (i.e., pearlfishes) are resistant to ichthyotoxic saponins as they display no stress response and a survival time 45 times longer than free-living fishes without any specific gill adaptation. The present study aims at discovering the resistance mechanism(s) developed by carapids by addressing 3 hypotheses: carapids have (1) a mechanical barrier against the toxin constituted by a larger secretion of mucus than other fishes, (2) a bioactive barrier against the toxins constituted by a mucus effective on saponins and (3) a Δ7sterol tissue composition mimicking holothuroids that enable them to resist to saponins. First experiments showed that the mucus has no effective impact on saponin chemical structures. Mass spectrometry analyses showed that carapids, similarly to non-symbiotic fishes but contrary to their hosts, present a Δ5sterol tissue composition. However, two different procedures have shown that carapids produce six to ten times more mucus than control fishes, suggesting that a great quantity of mucus can protect carapids from their host’s saponins and acts as a mechanical barrier against toxins. Therefore, these results provide a new understanding of the carapids–holothuroids relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Althunibat OY, Bin Hashim R, Taher M et al (2009) In vitro antioxidant and antiproliferative activities of three Malaysian sea cucumber species. Eur J Sci Res 37:376–387

    Google Scholar 

  • Armah CN, Mackie AR, Roy C et al (1999) The Membrane-permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophys J 76:281–290. doi:10.1016/S0006-3495(99)77196-1

    Article  CAS  Google Scholar 

  • Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457. doi:10.1016/j.phytochem.2011.01.015

    Article  CAS  Google Scholar 

  • Bader G, Hiller K (1987) Neue Ergebnisse zur Struktur und Wirkungsweise von Triterpensaponinen. Pharmazie 42:577–597

    CAS  Google Scholar 

  • Bakus GJ (1968) Defensive mechanisms and ecology of some tropical holothurians. Mar Biol 2:23–32. doi:10.1007/BF00351634

    Article  Google Scholar 

  • Ballantine JA, Lavis A, Morris RJ (1981) Marine sterols. XV. Sterols of some oceanic holothurians. J Exp Mar Bio Ecol 53:89–103. doi:10.1016/0022-0981(81)90086-1

    Article  CAS  Google Scholar 

  • Barwick VJ (1999) Sources of uncertainty in gas chromatography and high-performance liquid chromatography. J Chromatogr A 849:13–33

    Article  CAS  Google Scholar 

  • Benndorf J (1987) Predation. Direct and Indirect Impacts on Aquatic Communities. University Press of New England

  • Brooks CJW, Horning EC, Young JS (1968) Characterization of sterols by gas chromatography-mass spectrometry of the trimethylsilyl ethers. Lipids 3:391–402. doi:10.1007/BF02531277

    Article  CAS  Google Scholar 

  • Burnell DJ, Apsimon JW (1983) Echinoderm Saponins. In: Marine natural products: chemical and biological perspectives. Academic Press Inc., pp 287–379

  • Castro-Aguirre JL, Garcia-Dominguez F, Balart EF (1996) Nuevos hospederos y datos morfometricos de Encheliophis dubius (Ophidiiformes: Carapidae) en el Golfo de Californica, Mexico. Rev Biol Trop 44:753–756

    Google Scholar 

  • Caulier G, Flammang P, Rakotorisoa P et al (2013) Preservation of the bioactive saponins of Holothuria scabra through the processing of trepang. Cah Biol Mar 54:685–690

    Google Scholar 

  • Cimino G, Ghiselin T (2001) Marine natural products chemistry as an evolutionary narrative. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 115–154

    Google Scholar 

  • Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61:75–85. doi:10.1016/j.addr.2008.09.008

    Article  CAS  Google Scholar 

  • Demeyer M, De Winter J, Caulier G et al (2014) Molecular diversity and body distribution of saponins in the sea star Asterias rubens by mass spectrometry. Comp Biochem Physiol Part B Biochem Mol Biol 168:1–11. doi:10.1016/j.cbpb.2013.10.004

    Article  CAS  Google Scholar 

  • Demeyer M, Wisztorski M, Decroo C et al (2015) Inter- and intra-organ spatial distributions of sea star saponins by MALDI imaging. Anal Bioanal Chem. doi:10.1007/s00216-015-9044-0

    Google Scholar 

  • Drazen JC, Phleger CF, Guest MA, Nichols PD (2008) Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: food web implications. Comp Biochem Physiol Part B Biochem Mol Biol 151:79–87. doi:10.1016/j.cbpb.2008.05.013

    Article  Google Scholar 

  • Eeckhaut I, Caulier G, Brasseur L et al (2015) Effects of holothuroid ichtyotoxic saponins on the gills of free-living fishes and symbiotic pearlfishes. Biol Bull 228:253–265

    Google Scholar 

  • Emery DC (1880) Fierasfer. Studî intorno alla sistematica, l’anatomia e la biologia delle specie mediterranee di questo digenere. Roma

  • Flammang P (2002) Biomechanics of adhesion in sea cucumber Cuvierian tubules (Echinodermata, Holothuroidea). Integr Comp Biol 42:1107–1115. doi:10.1093/icb/42.6.1107

    Article  Google Scholar 

  • Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587. doi:10.1079/BJN2002725

    Article  CAS  Google Scholar 

  • Glauert AM, Dingle JT, Lucy JA (1962) Action of saponin on biological cell membranes. Nature 196:953–955. doi:10.1038/196953a0

    Article  CAS  Google Scholar 

  • Goad LJ (1983) Steroid biochemistry of marine invertebrates. Mar Chem 12:225. doi:10.1016/0304-4203(83)90087-7

    Article  Google Scholar 

  • Goad LJ, Akihisa T (1997) Analysis of sterols, 6th edn. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Goad LJ, Rubinstein I, Smith AG (1972) The sterols of echinoderms. Proc R Soc B Biol Sci 180:223–246. doi:10.1098/rspb.1972.0016

    Article  CAS  Google Scholar 

  • Ida H, Sano M, Kawashima T, Yasuda F (1977) New records of a pomacentrid fish, Dascyllus melanurus and Cirrhitid Fish, Paracirrhites hemistictus from Japanese Waters. Jpn J Ichthyol 24:213–217

    Google Scholar 

  • Jangoux M (1984) Diseases of echinoderms. Helgolander meeresunters 37:207–216

    Article  Google Scholar 

  • Kalinin VI, Prokofieva NG, Likhatskaya GN et al (1996) Hemolytic activities of triterpene glycosides from the holothurian order dendrochirotida: some trends in the evolution of this group of toxins. Toxicon 34:475–483. doi:10.1016/0041-0101(95)00142-5

    Article  CAS  Google Scholar 

  • Kicha AA, Ivanchina NV, Gorshkova IA et al (2001) The distribution of free sterols, polyhydroxysteroids and steroid glycosides in various body components of the starfish Patiria (= Asterina) pectinifera. Comp Biochem Physiol Part B Biochem Mol Biol 128:43–52. doi:10.1016/S1096-4959(00)00317-1

    Article  CAS  Google Scholar 

  • Knights BA (1967) Identification of plant sterols using combined GLC/Mass spectrometry. J Chromatogr Sci 5:273–282

    Article  CAS  Google Scholar 

  • Kofler L (1927) Die saponine. Springer Vienna, Vienna

    Book  Google Scholar 

  • Li R, Zhou Y, Wu Z, Ding L (2006) ESI-QqTOF-MS/MS and APCI-IT-MS/MS analysis of steroid saponins from the rhizomes of Dioscorea panthaica. J Mass Spectrom 41:1–22. doi:10.1002/jms.988

    Article  Google Scholar 

  • Machida Y (1989) New distribution records of the pearlfish, Carapus mourlani, with notes on its morphometry. Jpn J Ichthyol 36:363–368. doi:10.1007/F02905622

    Article  Google Scholar 

  • Mackie AM, Singh HT, Owen JM (1977) Studies on the distribution, biosynthesis and function of steroidal saponins in echinoderms. Comp Biochem Physiol Part B Comp Biochem 56:9–14. doi:10.1016/0305-0491(77)90214-0

    Article  CAS  Google Scholar 

  • Maier MS (2008) Biological activities of sulfated glycosides from echinoderms. Bioact Nat Prod 35:311–354. doi:10.1016/S1572-5995(08)80008-7

    CAS  Google Scholar 

  • Markle DF, Olney JE (1990) Systematics of the pearlfishes (Pisces:carapidae). Bull Mar Sci 47:269–410

    Google Scholar 

  • Meyer-Rochow VB (1977) Comparison between 15 Carapus mourlani in a Single Holothurian and 19 C. mourlani from Starfish. Copeia 1977:582. doi:10.2307/1443286

    Article  Google Scholar 

  • Meyer-Rochow VB (1979) Stomach and gut contents of Carapus mourlani from starfish and a holothurian. Ann Zool Fenn 16:287–289

    Google Scholar 

  • Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500. doi:10.1016/S0163-7827(02)00006-1

    Article  CAS  Google Scholar 

  • Morris RJ, Ballantine JA, Roberts JC, Lavis A (1982) The sterols of some marine teleosts. Comp Biochem Physiol Part B Comp Biochem 73:481–484. doi:10.1016/0305-0491(82)90063-3

    Article  Google Scholar 

  • Nigrelli RF (1952) The effect of holothurin on fish, and mice with sarcoma 180. Zoologica 37:89–90

    CAS  Google Scholar 

  • Paredes-Ríos GA, Balart EF, Paredes-Rios GA (1999) Corroboration of the Bivalve, Pinna rugosa, as a Host of the Pacific Pearlfish, Encheliophis dubius (Ophidiiformes: Carapidae), in the Gulf of California, México. Copeia 1999:521. doi:10.2307/1447503

    Article  Google Scholar 

  • Parmentier E (2003) Contribution à l’étude des relations entre des poissons de la famille des Carapidae et leurs hôtes invertébrés : une approche multidisciplinaire. University of Liege

  • Parmentier E, Castillo G, Chardon M, Vandewalle P (2000) Phylogenetic analysis of the pearlfish tribe Carapini (Pisces: Carapidae). Acta Zool 81:293–306

    Article  Google Scholar 

  • Parmentier E, Vandewalle P (2003) Morphological adaptations of Pearlfish (Carapidae) to their various Habitats. In: Val AL (ed) Fish adaptations. Science Pu, Oxford, pp 261–276

    Google Scholar 

  • Parmentier E, Vandewalle P (2005) Further insight on carapid holothuroid relationships. Mar Biol 146:455–465. doi:10.1007/s00227-004-1467-7

    Article  Google Scholar 

  • Ponomarenko LP, Kalinovsky AI, Moiseenko OP, Stonik VA (2001) Free sterols from the holothurians Synapta maculata, Cladolabes bifurcatus and Cucumaria sp. Comp Biochem Physiol Part B Biochem Mol Biol 128:53–62. doi:10.1016/S1096-4959(00)00318-3

    Article  CAS  Google Scholar 

  • Popov AA, Kalinovskaia NI, Kuznetsova TA et al (1983) Role of sterols in the membranotropic activity of triterpene glycosides. Antibiotiki 28:656–659

    CAS  Google Scholar 

  • Shen SC, Yeh HS (1987) Study on pearlfishes (Ophidiiformes : Carapidae) of Taiwan. J Taiwan Museum 40:45–56

    Google Scholar 

  • Shubina LK, Fedorov SN, Levina EV et al (1998) Comparative study on polyhydroxylated steroids from echinoderms. Comp Biochem Physiol Part B Biochem Mol Biol 119:505–511. doi:10.1016/S0305-0491(98)00011-X

    Article  Google Scholar 

  • Smith CL (1964) Some pearlfishes from Guam, with notes on their ecology. Pacific Sci 18:34–40

    Google Scholar 

  • Smith CL, Tyler JC (1969) Observations on the commensal relationship of the Western Atlantic Pearlfish, Carapus bermudensis, and Holothurians. Copeia 1969:206. doi:10.2307/1441726

    Article  Google Scholar 

  • Smith AG, Rubinstein I, Goad LJ (1973) The sterols of the echinoderm Asterias rubens. Biochem J 135:443–455

    Article  CAS  Google Scholar 

  • Stonik VA, Ponomarenko LP, Makarieva TN et al (1998) Free sterol compositions from the sea cucumbers Pseudostichopus trachus, Holothuria (Microtele) nobilis, Holothuria scabra, Trochostoma orientale and Bathyplotes natans. Comp Biochem Physiol Part B Biochem Mol Biol 120:337–347. doi:10.1016/S0305-0491(98)10023-8

    Article  Google Scholar 

  • Stonik A, Kalinin VI, Avilov SA (1999) Toxins from sea cucumbers (holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J Nat Toxins 8:235–248

    CAS  Google Scholar 

  • Trott LB (1970) Contribution of the biology of carapid fishes (Paracanthopterygian: Gadiformes). Univ Calif Publ Zool 89:1–41

    Google Scholar 

  • Trott LB, Chan WL (1972) Carapus homei commensal in the mantle cavity of Tricadna sp. in the South China Sea. Copeia 872–873

  • Trott LB, Trott EB (1972) Pearlfishes (Carapidae: Gadiforme) collected from Puerto Galera, Minobra, Philippines. Copeia 839–843

  • Tsutsui S, Komatsu Y, Sugiura T et al (2011) A unique epidermal mucus lectin identified from catfish (Silurus asotus): first evidence of intelectin in fish skin slime. J Biochem 150:501–514. doi:10.1093/jb/mvr085

    Article  CAS  Google Scholar 

  • Tyler JC, Bohlke JE (1972) Records of sponge-dwelling fishes, primary of the Caribbean. Bull Mar Sci 22:601–642

    Google Scholar 

  • Van Dyck S, Gerbaux P, Flammang P (2009) Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Comp Biochem Physiol Part B Biochem Mol Biol 152:124–134. doi:10.1016/j.cbpb.2008.10.011

    Article  Google Scholar 

  • Vanderplanck M, Michez D, Vancraenenbroeck S, Lognay G (2011) Micro-quantitative method for analysis of sterol levels in honeybees and their pollen loads. Anal Lett 44:1807–1820. doi:10.1080/00032719.2010.526271

    Article  CAS  Google Scholar 

  • Vanderplanck M, Moerman R, Rasmont P et al (2014) How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS ONE 9:e86209. doi:10.1371/journal.pone.0086209

    Article  Google Scholar 

  • Weber M (1913) Die fische der Siboga-expedition. E. J. Brill, Leiden

    Google Scholar 

  • Xu D, Cui J, Bansal R et al (2009) The ellipsoidal area ratio: an alternative anisotropy index for diffusion tensor imaging. Magn Reson Imaging 27:311–323. doi:10.1016/j.mri.2008.07.018

    Article  Google Scholar 

  • Yamanouchi T (1955) On the poisonous substance contained in holothurians. Publ Seto Mar Biol Lab 4:183–203

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the IH.SM (Toliara, Madagascar) for having allowed them to carry out their experiments within their institute and M. Todesco for technical assistance. This work was supported by a FRFC project (FNRS, Fonds National de la Recherche Scientifique). This study is a contribution by the Centre Interuniversitaire de Biologie Marine (CIBIM). The UMONS MS Lab is grateful to the FNRS for financial support in the acquisition of the Waters QToF Premier Mass Spectrometer and for continuing support. GC benefited and thanks the fund Leopold III and the grant Agathon de Potter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lola Brasseur.

Additional information

Responsible Editor: F. Weinberger.

Reviewerd by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasseur, L., Parmentier, E., Caulier, G. et al. Mechanisms involved in pearlfish resistance to holothuroid toxins. Mar Biol 163, 129 (2016). https://doi.org/10.1007/s00227-016-2901-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2901-3

Keywords

Navigation