Skip to main content

Advertisement

Log in

Biological and environmental signals recorded in shells of Argonauta argo (Cephalopoda, Octobrachia) from the Sea of Japan

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The argonauts (genus Argonauta) are enigmatic cephalopods. They have a cosmopolitan distribution in subtropical and tropical seas, where they inhabit the epipelagic zone. Their biology, ecology, and life cycle are poorly understood. It is for the first time that stable isotope (δ13C, δ18O) and element ratios (Mg/Ca, Sr/Ca, Ba/Ca) from three argonaut shells have been analyzed in order to test whether their life cycle and habitat are reflected in these data. The three studied shells have been collected in October 2012 from a mass stranding in Yoichi Bay, Hokkaido, Japan. The specimens were sampled along the keel of the shells to acquire ontogenetic records and along growth-sections of the shells to obtain synchronous data of differing shell growth rates. Carbon and oxygen isotope values as well as Mg/Ca ratios are in part controlled by the shell growth rate. Sr/Ca values show similar ontogenetic trends in the three shells. Comparison with measured sea surface temperature data indicates a temperature control on δ18O, Mg/Ca, and Sr/Ca, and a fast growth of the argonaut shell. Ba/Ca ratios of the shells might record environmental parameters. These new data highlight the influence of vital effects, but they also demonstrate that argonaut shell isotopic and elemental records can be used to understand the life cycle of these animals better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143

    Article  CAS  Google Scholar 

  • Anderson TF, Arthur MA (1983) Stable isotopes of oxygen and carbon and their applications to sedimentological and paleoenvironmental problems. In: Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land LS (eds) Stable Isotopes in Sedimentary Geology: SEPM Short course 10, 1.1–1.151

  • Aubert H (1862) Die Cephalopoden des Aristoteles. Z Wiss Zool Abt A 12, 39 pp

  • Auclair A-C, Lécuyer C, Bucher H, Sheppard SM (2004) Carbon and oxygen isotope composition of Nautilus macromphalus: a record of thermocline waters off New Caledonia. Chem Geol 207:91–100. doi:10.1016/j.chemgeo.2004.02.006

    Article  CAS  Google Scholar 

  • Bandel K, Dullo W-C (1984) Zur Schalenstruktur fossiler und rezenter Argonauta-Gehäuse (Octopoda, Cephalopoda). Natur und Mensch, Jahresmitteilungen der Naturhistorischen Gesellschaft Nürnberg e.V., pp 33–38

  • Chauvaud L, Lorrain A, Dunbar RB, Paulet YM, Thouzeau G, Jean F, Guarini JM, Mucciarone D (2005) Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochem Geophys Geosys. doi:10.1029/2004GC000890

    Google Scholar 

  • Chivas AR, De Deckker P, Shelley JMG (1986) Magnesium content of non-marine ostracod shells: a new palaeosalinometer and palaeothermometer. Palaeogr Palaeoclim Palaeoecol 54:43–61

    Article  CAS  Google Scholar 

  • Dance MA, Bello G, Furey NB, Rooker JR (2014) Species-specific variation in cuttlebone δ13C and δ18O for three species of Mediterranean cuttlefish. Mar Biol 161:489–494. doi:10.1007/s00227-013-2346-x

    Article  Google Scholar 

  • Finn JK (2013) Taxonomy and biology of the argonauts (Cephalopoda: Argonautidae) with particular reference to Australian material. Molluscan Res 33:143–222. doi:10.1080/13235818.2013.824854

    Article  Google Scholar 

  • Finn JK, Norman MD (2010) The argonaut shell: gas-mediated buoyancy control in a pelagic octopus. Proc R Soc B 277:2967–2971. doi:10.1098/rspb.2010.0155

    Article  Google Scholar 

  • Freitas PS, Clarke LJ, Kennedy H, Richardson CA, Abrantes F (2006) Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus. Geochim Cosmochim Acta 70:5119–5133. doi:10.1016/j.gca.2006.07.029

    Article  CAS  Google Scholar 

  • Goodwin DH, Gillikin DP, Roopnarine PD (2013) Preliminary evaluation of potential stable isotope and trace element productivity proxies in the oyster Crassostrea gigas. Palaeogeogr Palaeoclimat Palaeoecol 373:88–97. doi:10.1016/j.palaeo.2012.03.034

    Article  Google Scholar 

  • Hahn S, Rodolfo-Metalpa R, Griesshaber E, Schmahl WW, Buhl D, Hall-Spencer JM, Baggini C, Fehr KT, Immenhauser A (2012) Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias. Biogeosciences 9:1897–1914. doi:10.5194/bg-9-1897-2012

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4, 9 pp. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Hewitt RA, Westermann GEG (2003) Recurrences of hypotheses about ammonites and Argonauta. J Palaeontol 77:792–795. doi:10.1666/0022-3360(2003)077<0792:ROHAAA>2.0.CO;2

    Article  Google Scholar 

  • Horibe Y, Ogura N (1968) Deuterium content as a parameter of water mass in the ocean. J Geophys Res 74:1239–1249

    Article  Google Scholar 

  • Hoving H-JT, Laptikhovsky VV, Robison BH (2015) Vampire squid reproductive strategy is unique among coleoid cephalopods. Curr Biol 25:R322–R323

    Article  CAS  Google Scholar 

  • Immenhauser A, Nägler TF, Steuber T, Hippler D (2005) A critical assessment of mollusk 18O/16O, Mg/Ca, and 44Ca/40Ca ratios as proxies for Cretaceous seawater temperature seasonality. Palaeogeogr Palaeocl Palaeoecol 215:221–237. doi:10.1016/j.palaeo.2004.09.005

    Article  Google Scholar 

  • Kim KR, Cho YK, Kang DJ, Ki JH (2005) The origin of the Tsushima Current based on oxygen isotope measurement. Geophys Res Lett. doi:10.1029/2004GL021211

    Google Scholar 

  • Kim S, Mucci A, Taylor B (2007) Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 C: revisited. Chem Geol 246:135–146. doi:10.1016/j.chemgeo.2007.08.005

    Article  CAS  Google Scholar 

  • Kimball JB, Dunbar RB, Guilderson TP (2014) Oxygen and carbon isotope fractionation in calcitic deep-sea corals: implications for paleotemperature reconstruction. Chem Geol 381:223–233. doi:10.1016/j.chemgeo.2014.05.008

    Article  CAS  Google Scholar 

  • Klein RT, Lohmann KC, Thayer CW (1996) Bivalve skeletons record sea-surface temperature and δ18O via Mg/Ca and 18O/16O ratios. Geology 24:415–418

    Article  CAS  Google Scholar 

  • Land LS, Lang JC, Barnes DJ (1975) Extension rate: a primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons. Mar Biol 33:221–233

    Article  CAS  Google Scholar 

  • Landman NH, Cochran JK, Rye DM, Tanabe K, Arnold JM (1994) Early life history of Nautilus: evidence from isotopic analyses of aquarium-reared specimens. Paleobiology 20:40–51

    Google Scholar 

  • Lazareth C, Vander Putten EV, André L, Dehairs F (2003) High-resolution trace element profiles in shells of the mangrove bivalve Isognomon ephippium: a record of environmental spatio-temporal variations? Estuar Coast Shelf Sci 57:1103–1114. doi:10.1016/S0272-7714(03)00013-1

    Article  CAS  Google Scholar 

  • Lécuyer C, Bucher H (2006) Stable isotope compositions of a late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? eEarth Discuss 1:1–19

    Article  Google Scholar 

  • Lorrain A, Gillikin DP, Paulet Y-M, Chauvaud L, Le Mercier A, Navez J, André L (2005) Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology 33:965–968

    Article  CAS  Google Scholar 

  • Lukeneder A, Harzhauser M, Müllegger S, Piller WE (2008) Stable isotopes (δ18O and δ13C) in Spirula spirula shells from three major oceans indicate developmental changes paralleling depth distributions. Mar Biol 154:175–182. doi:10.1007/s00227-008-0911-5

    Article  CAS  Google Scholar 

  • Marali S, Wisshak M, López Correa M, Freiwald A (2013) Skeletal microstructure and stable isotope signature of three bathyal solitary cold-water corals from the Azores. Palaeogeogr Palaeoclimat Palaeoecol 373:25–38. doi:10.1016/j.palaeo.2012.06.017

    Article  Google Scholar 

  • McConnaughey T (1989a) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162

    Article  CAS  Google Scholar 

  • McConnaughey T (1989b) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53:163–171

    Article  CAS  Google Scholar 

  • McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28:287–299. doi:10.1007/s00367-008-0116-4

    Article  CAS  Google Scholar 

  • Mitchell PR, Phakey PP, Rachinger WA (1994) Ultrastructural observations of the argonaut shell. Scanning Microsc 8:35–46

    Google Scholar 

  • Moriyasu S (1972) The Tsushima Current. In: Stommel H, Yoshida K (eds) Kuroshio: its physical aspects. University of Tokyo Press, Tokyo, pp 353–369

    Google Scholar 

  • Nesis KN (1977) The biology of paper nautiluses, Argonauta boettgeri and Argonauta hians (Cephalopoda, Octopoda) in the western Pacific Ocean and the seas of the East Indian Archipelago. Zool Zh 56:1004–1014

    Google Scholar 

  • Nishimura S (1968) Glimpse of the biology of Argonauta argo Linnaeus (Cephalopoda: Octopodida) in the Japanese waters. Publ Seto Mar Biol Lab 16:61–70

    Google Scholar 

  • Nürnberg D, Bijma J, Hemleben C (1996) Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta 60:803–814

    Article  Google Scholar 

  • O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J Zool 64:1591–1605

    Article  Google Scholar 

  • Okutani T, Kawaguchi T (1983) A mass occurrence of Argonauta argo (Cephalopoda: Octopoda) along the coast of Shimane Prefecture, Western Japan Sea. Jpn J Malac 41:281–290

    Google Scholar 

  • Owen R, Kennedy H, Richardson C (2002) Isotopic partitioning between scallop shell calcite and seawater: effect of shell growth rate. Geochim Cosmochim Acta 66:1727–1737

    Article  CAS  Google Scholar 

  • Poulain C, Gillikin DP, Thébault J, Munaron JM, Bohn M, Robert R, Paulet Y-M, Lorrain A (2015) An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chem Geol 396:42–50. doi:10.1016/j.chemgeo.2014.12.019

    Article  CAS  Google Scholar 

  • Power J (1839) Observations on the pulp of the argonaut. Mag Nat Hist 3:101–106

    Google Scholar 

  • Price GD, Twitchett RJ, Smale C, Marks V (2009) Isotopic analysis of the life history of the enigmatic squid Spirula spirula, with implications for studies of fossil cephalopods. Palaios 24:273–279. doi:10.2110/palo.2008.p08-067r

    Article  Google Scholar 

  • Rexfort A, Mutterlose J (2006) Stable isotope records from Sepia officinalis—a key to understanding the ecology of belemnites? Earth Planet Sci Lett 247:212–221. doi:10.1016/j.epsl.2006.04.025

    Article  CAS  Google Scholar 

  • Rexfort A, Mutterlose J (2009) The role of biogeography and ecology on the isotope signature of cuttlefishes (Cephalopoda, Sepiidae) and the impact on belemnite studies. Palaeogeogr Palaeoclimat Palaeoecol 284:153–163. doi:10.1016/j.palaeo.2009.09.021

    Article  Google Scholar 

  • Reznick D, Bryant MJ, Bashey F (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:1509. doi:10.2307/3071970

    Article  Google Scholar 

  • Robinson LF, Adkins JF, Frank N, Cagnon AC, Prouty NG, Roark EB, van de Flierdt T (2014) The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography. Deep-Sea Res Part II 99:184–198. doi:10.1016/j.dsr2.2013.06.005

    Article  CAS  Google Scholar 

  • Roper CFE, Sweeney MJ, Nauen CE (1984) Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries. FAO Fish Synop 3(125):277

    Google Scholar 

  • Schöne BR (2008) The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Mar Lett 28:269–285. doi:10.1007/s00367-008-0114-6

    Article  Google Scholar 

  • Schöne BR, Radermacher P, Zhang Z, Jacob DE (2013) Crystal fabrics and element impurities (Sr/Ca, Mg/Ca, and Ba/Ca) in shells of Arctica islandica—implications for paleoclimate reconstructions. Palaeogeogr Palaeoclimat Palaeoecol 373:50–59. doi:10.1016/j.palaeo.2011.05.013

    Article  Google Scholar 

  • Staudinger MD, Juanes F, Salmon B, Teffer AK (2013) The distribution, diversity, and importance of cephalopods in top predator diets from offshore habitats of the Northwest Atlantic Ocean. Deep-Sea Res Part II 95:182–192. doi:10.1016/j.dsr2.2012.06.004

    Article  Google Scholar 

  • Stevens K, Mutterlose J, Wiedenroth K (2015) Stable isotope data (δ18O, δ13C) of the ammonite genus Simbirskites—implications for habitat reconstructions of extinct cephalopods. Palaeogeogr Palaeoclimat Palaeoecol 417:164–175. doi:10.1016/j.palaeo.2014.10.031

    Article  Google Scholar 

  • Strugnell J, Allcock AL (2010) Co-estimation of phylogeny and divergence times of Argonautoidea using relaxed phylogenetics. Mol Phylogenet Evol 54:701–708. doi:10.1016/j.ympev.2009.11.017

    Article  Google Scholar 

  • Sukhsangchan C, Nabhitabhat J (2007) Embryonic development of muddy paper nautilus Argonauta hians Lightfoot, 1786, from Andaman Sea, Thailand. Kasetsart J Nat Sci 41:531–538

    Google Scholar 

  • Suzuki A, Enya T (2013) Mass strandings of the common paper nautilus Argonauta argo along the coast of Yoichi Bay, Hokkaido, in the autumn of 2012. J Jpn Drift Soc 11:1–6

    Google Scholar 

  • Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Sci Rev 19:51–80

    Article  CAS  Google Scholar 

  • Taft BA (1972) Characteristics of the flow of the Kuroshio south of Japan. In: Stommel H, Yoshida K (eds) Kuroshio: its physical aspects. University of Tokyo Press, Tokyo, pp 165–216

    Google Scholar 

  • Tang J, Köhler SJ, Dietzel M (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation. Geochim Cosmochim Acta 72:3718–3732. doi:10.1016/j.gca.2008.05.031

    Article  CAS  Google Scholar 

  • Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark and the southeastern United States. Bull Geol Soc Am 62:399–416

    Article  CAS  Google Scholar 

  • Uye S-S, Shimazu T (1997) Geographical and seasonal variations in abundance, biomass and estimated production rates of meso- and macrozooplankton in the inland Sea of Japan. J Oceanogr 53:529–538

    Google Scholar 

  • Uye S-S, Nagano N, Tamaki H (1996) Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the inland Sea of Japan. J Oceanogr 52:689–703

    Article  Google Scholar 

  • Vander Putten EV, Dehairs F, Keppens E, Baeyens W (2000) High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim Cosmochim Acta 64:997–1011

    Article  Google Scholar 

  • Wanamaker AD, Kreutz KJ, Borns HW, Introne DS, Feindel S, Funder S, Rawson PD, Barber BJ (2007) Experimental determination of salinity, temperature, growth, and metabolic effects on shell isotope chemistry of Mytilus edulis collected from Maine and Greenland. Paleoceanography. doi:10.1029/2006PA001352

    Google Scholar 

  • Warnke K, Oppelt A, Hoffmann R (2010) Stable isotopes during ontogeny of Spirula and derived hatching temperatures. Ferrantia 59:191–201

    Google Scholar 

  • Watkins JM, Hunt JD, Ryerson FJ, DePaolo DJ (2014) The influence of temperature, pH, and growth rate on the δ18O composition of inorganically precipitated calcite. Earth Planet Sci Lett 404:332–343. doi:10.1016/j.epsl.2014.07.036

    Article  CAS  Google Scholar 

  • Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29

    Article  CAS  Google Scholar 

  • Wolfe K, Smith AM, Trimby P, Byrne M (2012a) Vulnerability of the paper nautilus (Argonauta nodosa) shell to a climate-change ocean: potential for extinction by dissolution. Biol Bull 223:236–244

    CAS  Google Scholar 

  • Wolfe K, Smith AM, Trimby P, Byrne M (2012b) Microstructure of the paper nautilus (Argonauta nodosa) shell and the novel application of electron backscatter diffraction (EBSD) to address effects of ocean acidification. Mar Biol 160:2271–2278. doi:10.1007/s00227-012-2032-4

    Article  Google Scholar 

Download references

Acknowledgments

This research is part of the DFG collaborative research group CHARON. We are grateful for funding provided by DFG Grant Mu667/43-1 to J. Mutterlose and JSPS Grant 25800285 to Y. Iba. We thank the staff of the laboratory of the GeoZentrum Nordbayern for performing the stable isotope analysis and the staff of the laboratory of the Ruhr-Universität Bochum for performing the ICP-OES analysis. Y. Nishida from the Central Fisheries Research Institute, Hokkaido Research Institution is thanked for supplying the SST data for Yoichi Bay, Hokkaido; K. Moriwaki from the Shimane Prefectural Fisheries Technology Center is acknowledged for the Hamada, Shimane SST data. We are thankful to the members of the CHARON research group for comments and discussions and to R. Hoffmann for discussions and supplying literature. C. Möller is thanked for proofreading an earlier draft of the manuscript. We thank the associate editor A.G. Checa as well as K. De Baets and an anonymous reviewer for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Stevens.

Additional information

Responsible Editor: A. Checa.

Reviewed by K. De Baets and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevens, K., Iba, Y., Suzuki, A. et al. Biological and environmental signals recorded in shells of Argonauta argo (Cephalopoda, Octobrachia) from the Sea of Japan. Mar Biol 162, 2203–2215 (2015). https://doi.org/10.1007/s00227-015-2750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2750-5

Keywords

Navigation