Skip to main content

Advertisement

Log in

Ascidians as models for studying invasion success

  • Invasive Species - Review
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

During the past three decades, coastal marine waters have become among the most invaded habitats globally. Ascidians are among the most notorious invaders in these ecosystems. Owing to their rapid spread, frequent population outbreaks, and associated negative ecological and economic impacts, invasive ascidians have become a global problem. Thus, the study of ascidian invasions has become a prominent area of invasion biology. Here, we review current knowledge and conclude that ascidians are good models for studying invasion success in the marine realm. Firstly, we summarize the reconstruction of invasion pathways or colonization histories and associated negative impacts of invasive ascidians, and address the urgent need to clarify ambiguous taxonomy of ascidians. Secondly, we discuss factors that underlie or facilitate invasion success of ascidians, including vectors of introduction and spread, environmental changes, biological traits, and possible genetic issues. Finally, we summarize current science-based policies and management solutions that are in place to prevent and control spread of invasive ascidians. We conclude by highlighting key research questions that remain to be answered, and propose future research to investigate mechanisms of invasion success in the marine realm using ascidians as model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams CM, Shumway SE, Whitlatch RB, Chetchis T (2011) Biofouling in marine molluscan shellfish aquaculture: a survey assessing the business and economic implications of mitigation. J World Aquacult Soc 42:242–252

    Google Scholar 

  • Airoldi L, Turon X, Perkol-Finkel S, Rius M (2015) Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Divers Distrib 21:755–768

    Google Scholar 

  • Aldred N, Clare AS (2014) Impact and dynamics of surface fouling by solitary and compound ascidians. Biofouling 30:259–270

    PubMed  Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T et al (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202

    CAS  PubMed  Google Scholar 

  • Australian Government (2011) Australian ballast water management requirements—version 5. Canberra, Australia

  • Australian Government (2013) Anti-fouling and in-water cleaning guidelines. Canberra, Australia

  • Ayre DJ, Davis AR, Billingham M, Llorens T, Styan C (1997) Genetic evidence for contrasting patterns of dispersal in solitary and colonial ascidians. Mar Biol 130:51–62

    Google Scholar 

  • Baker HG, Stebbins GL (1965) The genetics of colonizing species. Academic Press, New York, NY

    Google Scholar 

  • Barrett SCH (2015) Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol 24:1927–1941

    PubMed  Google Scholar 

  • Beiras R, Fernández N, Bellas J, Besada V, González-Quijano A, Nunes T (2003) Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere 52:1209–1224

    CAS  PubMed  Google Scholar 

  • Ben-Shlomo R, Paz G, Rinkevich B (2006) Postglacial-period and recent invasions shape the population genetics of botryllid ascidians. Ecosystem 9:1118–1127

    Google Scholar 

  • Ben-Shlomo R, Reem E, Douek J, Rinkevich B (2010) Population genetics of the invasive ascidian Botryllus schlosseri from South American coasts. Mar Ecol Prog Ser 412:85–92

    Google Scholar 

  • Bernier RY, Locke A, Hanson JM (2009) Lobsters and crabs as potential vectors for tunicate dispersal in the southern Gulf of St. Lawrence, Canada. Aquat Invasions 4:105–110

    Google Scholar 

  • Bingham BL, Young CM (1991) Larval behavior of the ascidian Ecteinascidia turbinata Herdman: an in situ experimental study of the effects of swimming on dispersal. J Exp Mar Biol Ecol 145:189–204

    Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    PubMed  Google Scholar 

  • Blum JC, Chang AL, Liljesthröm M, Schenk ME, Steinberg MK, Ruiz GM (2007) The non-native solitary ascidian Ciona intestinalis (L.) depresses species richness. J Exp Mar Biol Ecol 342:5–14

    Google Scholar 

  • Bock DG, Zhan A, Lejeusne C, MacIsaac HJ, Cristescu ME (2011) Looking at both sides of the invasion: patterns of colonization in the violet tunicate Botrylloides violaceus. Mol Ecol 20:503–516

    CAS  PubMed  Google Scholar 

  • Bock DG, MacIsaac HJ, Cristescu ME (2012) Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian. Proc R Soc Lond B 279:2377–2385

    Google Scholar 

  • Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297

    PubMed  Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11

    PubMed  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Briski E, Bailey SA, MacIsaac HJ (2011) Invertebrates and their dormant eggs transported in ballast sediments of ships arriving to the Canadian coasts and the Laurentian Great Lakes. Limnol Oceanogr 56:1929–1939

    Google Scholar 

  • Briski E, Bailey SA, Casas-Monroy O, DiBacco C, Kaczmarska I, Lawrence JE, Leichsenring J, Levings C, MacGillivary ML, McKindsey CW, Nasmith LE, Parenteau M, Piercey GE, Rivkin RB, Rochon A, Roy S, Simard N, Sun B, Way C, Weise AM, MacIsaac HJ (2013) Taxon- and vector-specific variation in species richness and abundance during the transport stage of biological invasions. Limnol Oceanogr 58:1361–1372

    Google Scholar 

  • Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L (2015) Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J Zool Syst Evol Res. doi:10.1111/jzs.12101

    Google Scholar 

  • Buizer DAG (1980) Explosive development of Styela clava Herdman 1882, in the Netherlands after its introduction (Tunicata Ascidiacea). Bull Zool Mus 7:181–187

    Google Scholar 

  • Bullard SG, Carman MR (2009) Current trend in invasive ascidian research. In: Wilcox CP, Turpin RB (eds) Invasive species: detection, impact and control. Nova Science Publishers Inc, New York, NY

    Google Scholar 

  • Bullard SG, Lambert G, Carman MR, Byrnes J, Whitlatch RB, Ruiz G, Miller RJ, Harris L, Valentine PC, Collie JS, Pederson J, McNaught DC, Cohen AN, Asch RG, Dijkstra J, Heinonen K (2007a) The colonial ascidian Didemnum sp. A: current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. J Exp Mar Biol Ecol 342:99–108

    Google Scholar 

  • Bullard SG, Sedlack B, Reinhardt JF, Litty C, Gareau K, Whitlatch RB (2007b) Fragmentation of colonial ascidians: differences in reattachment capability among species. J Exp Mar Biol Ecol 342:166–168

    Google Scholar 

  • Cahil P, Heasman K, Jeffs A, Kuhajek J, Mountfort D (2012) Preventing ascidian fouling in aquaculture: screening selected allelochemicals for anti-metamorphic properties in ascidian larvae. Biofouling 28:39–49

    Google Scholar 

  • Callahan AG, Deibel D, McKenzie CH, Hall JR, Rise ML (2010) Survey of harbours in Newfoundland for indigenous and non-indigenous ascidians and an analysis of their cytochrome c oxidase I gene sequences. Aquat Invasions 5:31–39

    Google Scholar 

  • Caputi L, Andreakis N, Mastrototaro F, Cirino P, Vassillo M, Sordino P (2007) Cryptic speciation in a model invertebrate chordate. Proc Natl Acad Sci USA 104:9364–9369

    PubMed  PubMed Central  Google Scholar 

  • Carlton JT (2009) Deep invasion ecology and the assembly of communities in historical time. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems: ecological, management, and geographic perspectives. Springer, Berlin, pp 13–56

    Google Scholar 

  • Carlton JT, Gellar JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82

    Google Scholar 

  • Carlton JT, Ruiz GM (2005) Vector science and integrated vector management in bioinvasion ecology: conceptual frameworks. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Johan Schei P, Waage JK (eds) Invasive alien species: a new synthesis. Island Press, Covelo, CA, pp 36–58

    Google Scholar 

  • Carver CE, Chisholm A, Mallet AL (2003) Strategies to mitigate the impact of Ciona intestinalis (L.) biofouling on shellfish production. J Shellfish Res 22:621–631

    Google Scholar 

  • Carver CE, Mallet AL, Vercaemer B (2006) Biological synopsis of the colonial tunicates, Botryllus schlosseri and Botrylloides violaceus. Canadian Manuscript Report of Fisheries and Aquatic Sciences, vol 2747, p v + 42p

  • Castilla JC, Guiňez R, Caro AU, Ortiz V (2004) Invasion of a rocky intertidal shore by the tunicate Pyura praeputialis in the Bay of Antofagasta, Chile. Proc Natl Acad Sci USA 101:8517–8524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA (2015) Biological invasions, climate change and genomics. Evol Appl 8:23–46

    PubMed  Google Scholar 

  • Chu KH, Tam PF, Fung CH, Chen QC (1997) A biological survey of ballast water in container ships entering Hong Kong. Hydrobiologia 352:201–206

    Google Scholar 

  • Clancey L, Hinton R (2003) Distribution of the tunicate, Ciona intestinalis, in Nova Scotia. Nova Scotia Department of Fisheries and Agriculture, Nova Scotia

    Google Scholar 

  • Cohen CS (1996) The effects of contrasting modes of fertilization on levels of inbreeding in the marine invertebrate genus Corella. Evolution 50:1896–1907

    PubMed  Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558

    CAS  PubMed  Google Scholar 

  • Colautti RI, Bailey SA, van Overdijk CDA, Amundsen K, MacIsaac HJ (2006) Characterised and projected costs of nonindigenous species in Canada. Biol Invasions 8:45–59

    Google Scholar 

  • Coutts ADM, Dodgshun TJ (2007) The nature and extent of organisms in vessel sea-chests: a protected mechanism for marine bioinvasions. Mar Pollut Bull 54:875–886

    CAS  PubMed  Google Scholar 

  • Coutts ADM, Forrest BM (2007) Development and application of tools for incursion response: lessons learned from the management of the fouling pest Didemnum vexillum. J Exp Mar Biol Ecol 342:154–162

    Google Scholar 

  • Coutts ADM, Moore KM, Hewitt CL (2003) Ships’ sea-chests: an overlooked transfer mechanism for non-indigenous marine species? Mar Pollut Bull 46:1504–1515

    Google Scholar 

  • Coutts ADM, Piola RF, Hewitt CL, Connell SD, Gardner JPA (2010) Effect of vessel voyage speed on survival of biofouling organisms: implications for translocation of non-indigenous marine species. Biofouling 26:1–13

    PubMed  Google Scholar 

  • Crawford KM, Whitney KD (2010) Population genetic diversity influences colonization success. Mol Ecol 19:1253–1263

    CAS  PubMed  Google Scholar 

  • Darbyson E, Locke A, Hanson JM, Willison HM (2009a) Marine boating habits and the potential for spread of invasive species in the Gulf of St. Lawrence. Aquat Invasions 4:87–94

    Google Scholar 

  • Darbyson E, Hanson JM, Locke A, Willison HM (2009b) Settlement and potential for transport of clubbed tunicate (Styela clava) on boat hulls. Aquat Invasions 4:95–103

    Google Scholar 

  • Darling JA, Herborg L, Davidson I (2012) Intracoastal shipping drives patterns of regional population expansion by an invasive marine invertebrate. Ecol Evol 2:2557–2566

    PubMed  PubMed Central  Google Scholar 

  • David GK, Marshall DJ, Riginos C (2010) Latitudinal variability in spatial genetic structure in the invasive ascidian, Styela plicata. Mar Biol 157:1955–1965

    Google Scholar 

  • Davis MH, Davis ME (2004) The distribution limits of Styela clava (Tunicata, Ascidiacea) in European waters. Porcup Mar Nat Hist Soc Newsl 15:35–43

    Google Scholar 

  • Davis MH, Davis ME (2008) First record of Styela clava (Tunicata, Ascidiacea) in the Mediterranean region. Aquat Invasions 3:125–132

    Google Scholar 

  • De Silva SS, Nguyen TTT, Turchini GM, Amarasinghe US, Abery NW (2009) Alien species in aquaculture and biodiversity: a paradox in food production. Ambio 38:24–28

    PubMed  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    CAS  PubMed  Google Scholar 

  • Department of Fisheries, Aquaculture and Rural Development (2012) Annual Report 2010–2011. Prince Edward Island, Canada

  • Department of Fisheries, Aquaculture and Rural Development (2014) Annual Report 2012–2013. Prince Edward Island, Canada

  • Department of Fisheries and Oceans Canada (2005) Governments of Canada and PEI announce funding for invasive tunicates. Fisheries and Oceans Canada, Media Room, News Release

  • Dijkstra J, Harris LG, Westerman E (2007) Distribution and long-term temporal patterns of four invasive colonial ascidians in the Gulf of Maine. J Exp Mar Biol Ecol 342:61–68

    Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    CAS  PubMed  Google Scholar 

  • Dupont L, Viard F, David P, Bishop JDD (2007) Combined effects of bottlenecks and selfing in populations of Corella eumyota, a recently introduced sea squirt in the English Channel. Divers Distrib 13:808–817

    Google Scholar 

  • Dupont L, Viard F, Dowell MJ, Wood C, Bishop JDD (2009) Fine- and regional-scale genetic structure of the exotic ascidian Styela clava (Tunicata) in southwest England, 50 years after its introduction. Mol Ecol 18:442–453

    CAS  PubMed  Google Scholar 

  • Dupont L, Viard F, Davis MH, Nishikawa T, Bishop JDD (2010) Pathways of spread of the introduced ascidian Styela clava (Tunicata) in Northern Europe, as revealed by microsatellite markers. Biol Invasions 12:2707–2721

    Google Scholar 

  • Dybern BI (1965) The life cycle of Ciona intestinalis (L.) f. typica in the relation to environmental temperature. Oikos 16:109–131

    Google Scholar 

  • Dybern BI (1967) Settlement of sessile animals on eternite slabs in two polls near Bergen. Sarsia 29:137–180

    Google Scholar 

  • Egan SP, Barnes MA, Hwang C, Mahon AR, Feder JL, Ruggiero ST, Tanner CE, Lodge DM (2013) Rapid invasive species detection by combining environmental DNA with light transmission spectroscopy. Conserv Lett 6:402–409

    Google Scholar 

  • Ellstrand NC, Schierenbeck K (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epelbaum A, Herborg JM, Therriault TW, Pearce CM (2009) Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. J Exp Mar Biol Ecol 369:43–52

    Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    PubMed  Google Scholar 

  • Fautin D, Dalton P, Incze LS, Leong J-AC, Pautzke C, Rosenberg A, Sandifer P, Sedberry G, Tunnell JW, Abbott I, Brainard RE, Brodeur M, Eldredge LG, Feldman M, Moretzsohn F, Vroom PS, Wainstein M, Wolff N (2010) An overview of marine biodiversity in United States waters. PLoS One 5:e11914

    PubMed  PubMed Central  Google Scholar 

  • Fay RC, Johnson JV (1971) Observations on the distribution and ecology of the littoral ascidians of the mainland coast of Southern California. Bull South Calif Acad Sci 70:114–124

    Google Scholar 

  • Fitridge I, Dempster T, Guenther J, de Nys R (2012) The impact and control of biofouling in marine aquaculture: a review. Biofouling 28:649–669

    PubMed  Google Scholar 

  • Fletcher LM, Forrest BM, Bell JJ (2013) Impacts of the invasive ascidian Didemnum vexillum on green-lipped mussel Perna canaliculus aquaculture in New Zealand. Aquacult Environ Interact 4:17–30

    Google Scholar 

  • Gab-Alla AAFA (2008) Distribution of the sea squirt Ecteinascidia thurstoni Herdman, 1890 (Ascidiacea: Perophoridae) along Suez Canal and Egyptian Red Sea Coasts. Oceanologia 50:239–253

    Google Scholar 

  • Geller JB, Darling JA, Carlton JT (2010) Genetic perspectives on marine biological invasions. Annu Rev Mar Sci 2:367–393

    Google Scholar 

  • Gittenberger A (2007) Recent population expansions of nonnative ascidians in the Netherlands. J Exp Mar Biol Ecol 342:122–126

    Google Scholar 

  • Gittenberger A (2009) Invasive tunicates on Zeeland and Prince Edward Island mussels, and management practices in the Netherlands. Aquat Invasions 4:279–281

    Google Scholar 

  • Godwin LS (2003) Hull fouling of maritime vessels as a pathway for marine species invasions to the Hawaiian Islands. Biofouling 19:123–131

    PubMed  Google Scholar 

  • Goldstien SJ, Schiek DR, Gemmell NJ (2010) Regional connectivity and coastal expansion: differentiating preborder and post-border vectors for the invasive tunicate Styela clava. Mol Ecol 19:874–885

    CAS  PubMed  Google Scholar 

  • Goldstien SJ, Dupont L, Viard F, Hallas PJ, Nishikawa T, Schiel DR, Gemmell NJ, Bishop JDD (2011) Global phylogeography of the widely introduced north pacific ascidian Styela clava. PLoS One 6:e16755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Government of Canada (2006) Ballast water control and management regulations. Canada Gazette 140(l3), Ottawa

  • Grey EK (2009) Do we need to jump in? A comparison of two survey methods of exotic ascidians on docks. Aquat Invasions 4:81–86

    Google Scholar 

  • Haydar D, Hoarau G, Olsen JL, Stam WT, Wolff WJ (2011) Introduced or glacial relict? Phylogeography of the cryptogenic tunicate Molgula manhattensis (Ascidiacea, Pleurogona). Divers Distrib 17:68–80

    Google Scholar 

  • Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT, Cariani A, Maes GE, Dopere E, Carvalho GR, Nielsen EE (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136

    PubMed  Google Scholar 

  • Herborg L-M, O’Hara P, Therriault TW (2009) Forecasting the potential distribution of the invasive tunicate Didemnum vexillum. J Appl Ecol 46:64–72

    Google Scholar 

  • Holloway MG, Connell SD (2002) Why do floating structures create novel habitats for subtidal epibiota? Mar Ecol Prog Ser 235:43–52

    Google Scholar 

  • Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J, Pyšek P, Roques A, Sol D, Solarz W, Vilà M (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414

    Google Scholar 

  • International Maritime Organization (IMO) (2004) International convention for the control and management of ships’ ballast water and sediments, London

  • International Maritime Organization (IMO) (2011) Guidelines for the control and management of ships’ biofouling to minimize the transfer of invasive species, London

  • Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    CAS  PubMed  Google Scholar 

  • Lacoursiere-Roussel A, Bock DG, Cristescu ME, Guichard F, Girard P, Legendre P, McKindsey CW (2012) Disentangling invasion processes in a dynamic shipping-boating network. Mol Ecol 21:4227–4241

    PubMed  Google Scholar 

  • Lahille F (1886) Sur la classification des Tuniciers. CR Acad Sci Paris 102:1573–1575

    Google Scholar 

  • Lambert G (2003) Marine biodiversity of Guam: the Ascidiacea. Micronesica 35–36:584–593

    Google Scholar 

  • Lambert G (2004) The south temperate and Antarctic ascidian Corella eumyota reported in two harbours in north-western France. J Mar Biol Assoc UK 84:239–241

    Google Scholar 

  • Lambert G (2005) Ecology and natural history of the protochordates. Can J Zool 83:34–50

    Google Scholar 

  • Lambert G (2007) Invasive sea squirts: a growing global problem. J Exp Mar Biol Ecol 342:3–4

    Google Scholar 

  • Lambert G (2009) Adventures of a sea squirt sleuth: unraveling the identity of Didemnum vexillum, a global ascidian invader. Aquat Invasions 4:5–28

    Google Scholar 

  • Lambert CC, Lambert G (1998) Nonindigenous ascidians in southern California harbors and marinas. Mar Biol 130:675–688

    Google Scholar 

  • Lambert CC, Lambert G (2003) Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Mar Ecol Prog Ser 259:145–161

    Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Google Scholar 

  • Lee CE, Kiergaard M, Eads BD, Gelembiuk GW, Posavi M (2011) Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution 65:2229–2244

    CAS  PubMed  Google Scholar 

  • Lejeusne C, Bock DG, Therriault TW, MacIsaac HJ, Cristescu ME (2011) Comparative phylogeography of two colonial ascidians reveals contrasting invasion histories in North America. Biol Invasions 13:635–650

    Google Scholar 

  • Lengyel NL, Collie JS, Valentine PC (2009) The invasive colonial ascidian Didemnum vexillum on Georges Bank—ecological effects and genetic identification. Aquat Invasions 4:143–152

    Google Scholar 

  • Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc Lond B 269:2407–2413

    Google Scholar 

  • Levings C, Kieser D, Jamieson G, Dudas S (2002) Marine and estuarine alien species in the Strait of Georgia, British Columbia. In: Claudi R (ed) Alien species in Canada. Natural Resources Canada, Ottawa, pp 111–131

    Google Scholar 

  • Lin Y, Gao Z, Zhan A (2015) Introduction and use of non-native species for aquaculture in China: status, risks and management solutions. Rev Aquacult 7:28–58

    Google Scholar 

  • Locke A (2009) A screening procedure for potential tunicate invaders of Atlantic Canada. Aquat Invasions 4:71–79

    Google Scholar 

  • Locke A, Hanson JM (2009a) Rapid response to non-indigenous species. 3. A proposed framework. Aquat Invasions 4:259–273

    Google Scholar 

  • Locke A, Hanson JM (2009b) Rapid response to non-indigenous species. 1. Goals and history of rapid response in the marine environment. Aquat Invasions 4:237–247

    Google Scholar 

  • Locke A, Hanson JM, Ellis KM, Thompson J, Rochette R (2007) Invasion of the southern Gulf of St. Lawrence by the clubbed tunicate (Styela clava Herdman): potential mechanisms for invasions of Prince Edward Island estuaries. J Exp Mar Biol Ecol 342:69–77

    Google Scholar 

  • Locke A, Hanson JM, MacNair NG, Smith AH (2009) Rapid response to non-indigenous species. 2. Case studies of invasive tunicates in Prince Edward Island. Aquat Invasions 4:249–258

    Google Scholar 

  • Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for U.S. policy and management. Ecol Appl 16:2035–2054

    PubMed  Google Scholar 

  • Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadderton L, Egan SP, Feder JL, Mahon AR, Pfrender ME (2012) Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Mol Ecol 21:2555–2558

    PubMed  PubMed Central  Google Scholar 

  • López-Legentil S, Turon X, Planes S (2006) Genetic structure of the star sea squirt, Botryllus schlosseri, introduced in southern European harbours. Mol Ecol 15:3957–3967

    PubMed  Google Scholar 

  • Lutz-Collins V, Ramsay A, Quijón PA, Davidson J (2009) Invasive tunicates fouling mussel lines: evidence of their impact on native tunicates and other epifaunal invertebrates. Aquat Invasions 4:213–220

    Google Scholar 

  • Marshall DJ, Keough MJ (2003) Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. Mar Ecol Prog Ser 255:145–153

    Google Scholar 

  • McEnnulty FR, Bax NJ, Schaffelke B, Campbell ML (2001) A review of rapid response options for the control of ABWMAC listed introduced marine pest species and related taxa in Australian waters. Centre for Research on Introduced Marine Pests Technical Report 23. CSIRO Marine Research, Hobart, Australia

  • McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291

    Google Scholar 

  • McKindsey CW, Landry T, O’Beirn FX, Davies IM (2007) Bivalve aquaculture and exotic species: a review of ecological considerations and management issues. J Shellfish Res 26:281–294

    Google Scholar 

  • Mead A, Carlton JT, Griffiths CL, Rius M (2011) Introduced and cryptogenic marine and estuarine species of South Africa. J Nat Hist 45:2463–2524

    Google Scholar 

  • Mercer JM, Whitlatch RB, Osman RW (2009) Potential effects of the invasive colonial ascidian (Didemnum vexillum Kott, 2002) on peddle-cobble bottom habitats in Long Island Sound, USA. Aquat Invasions 4:133–142

    Google Scholar 

  • Milkman R (1967) Genetic and developmental studies on Botryllus schlosseri. Biol Bull 132:229–243

    PubMed  Google Scholar 

  • Minchin D (2007) Rapid coastal survey for targeted alien species associated with floating pontoons in Ireland. Aquat Invasions 1:143–147

    Google Scholar 

  • Minchin D, Davis MH, Davis ME (2006) Spread of the Asian tunicate Styela clava Herdman, 1882 to the east and south-west of Ireland. Aquat Invasions 1:91–96

    Google Scholar 

  • Monniot C, Monniot F, Laboute P (1991) Coral reef ascidians of New Caledonia. ORSTOM, Paris

    Google Scholar 

  • Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, MacIsaac HJ (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol Ecol 17:431–449

    Google Scholar 

  • Muñoz J, McDonald J (2014) Potential Eradication and Control Methods for the Management of the Ascidian Didemnum perlucidum in Western Australia. Fisheries Research Report No. 252

  • Murray CC, Pakhomov EA, Therriault TW (2011) Recreational boating: a large unregulated vector transporting marine invasive species. Divers Distrib 17:1161–1172

    Google Scholar 

  • Naranjo SA, Carballo JL, Garcia-Gomez JC (1996) Effects of environmental stress on ascidian populations in Algeciras Bay (southern Spain). Possible marine bioindicators? Mar Ecol Prog Ser 144:119–131

    Google Scholar 

  • Naylor RL, Williams SL, Strong DR (2001) Aquaculture—a gateway for exotic species. Science 294:1655–1656

    CAS  PubMed  Google Scholar 

  • New Zealand Government (2010) Requirements for Vessels Arriving in New Zealand. Ministry for Primary Industries, Wellington

    Google Scholar 

  • Nomaguchi TA, Nishijima C, Minowa S, Hashimoto M, Haraguchi C, Amemiya S, Fujisawa H (1997) Embryonic thermosensitivity of the ascidian, Ciona savignyi. Zool Sci 14:511–515

    Google Scholar 

  • Nydam ML, Harrison RG (2007) Genealogical relationships within and among shallow-water Ciona species (Ascidiacea). Mar Biol 151:1839–1847

    Google Scholar 

  • Nydam ML, Harrison RG (2010) Polymorphism and divergence within the ascidian genus Ciona. Mol Phylogent Evol 56:718–726

    Google Scholar 

  • Ordoñez V, Pascual M, Rius M, Turon X (2013) Mixed but not admixed: a spatial analysis of genetic variation of an invasive ascidian on natural and artificial substrates. Mar Biol 160:1645–1660

    Google Scholar 

  • Ordoñez V, Pascual M, Fernández-Tejedor Pineda MC, Tagliapietra D, Turon X (2015) Ongoing expansion of the worldwide invader Didemnum vexillum (Ascidiacea) in the Mediterranean Sea: high plasticity of its biological cycle promotes establishment in warm waters. Biol Invasions 17:2075–2085

    PubMed  PubMed Central  Google Scholar 

  • Pérez-Portela R, Bishop JDD, Davis AR, Turon X (2009) Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 50:560–570

    PubMed  Google Scholar 

  • Pérez-Portela R, Turon X, Bishop JDD (2012) Bottlenecks and loss of genetic diversity: spatio-temporal patterns of genetic structure in an ascidian recently introduced in Europe. Mar Ecol Prog Ser 451:93–105

    Google Scholar 

  • Pérez-Portela R, Arranz V, Rius M, Turon X (2013) Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities. Sci Rep 3:3197

    Google Scholar 

  • Petersen JK (2007) Ascidian suspension feeding. J Exp Mar Biol Ecol 342:127–137

    Google Scholar 

  • Pineda MC, López-Legentil S, Turon X (2011) The whereabouts of an ancient wanderer: global phylogeography of the solitary ascidian Styela plicata. PLoS One 6:e25495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pineda MC, McQuaid CD, Turon X, López-Legentil S, Ordóñez V, Rius M (2012) Tough adults, frail babies: an analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS One 7:e46672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pisut DP, Pawlik JR (2002) Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J Exp Mar Biol Ecol 270:203–214

    CAS  Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294

    CAS  PubMed  Google Scholar 

  • Procaccini G, Affinito O, Toscano F, Sordino P (2011) A new animal model for merging ecology and evolution. In: Pontarotti P (ed) Evolutionary biology—concepts, biodiversity, macroevolution and genome evolution. Springer, Berlin, pp 91–106

    Google Scholar 

  • Ramsay A, Davidson J, Landry T, Arsenault G (2008) Process of invasiveness among exotic tunicates in Prince Edward Island, Canada. Biol Invasions 10:1311–1316

    Google Scholar 

  • Reaser JK, Meyerson LA, Von Holle B (2008) Saving camels from straws: how propagule pressure-based prevention policies can reduce the risk of biological invasion. Biol Invasions 10:1085–1098

    Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evol Int J Org Evol 55:1095–1103

    CAS  Google Scholar 

  • Reem E, Douek J, Katzir G, Rinkevich B (2013) Long-term population genetic structure of an invasive urochordate: the ascidian Botryllus schlosseri. Biol Invasions 15:225–241

    Google Scholar 

  • Rhyne AL, Tlusty MF, Schofield PJ, Kaufman L, Morris JA Jr, Bruckner AW (2012) Revealing the appetite of the marine aquarium fish trade: the volume and biodiversity of fish imported into the United States. PLoS One 7:e35808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciardi A, Rasmussen JB (1998) Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Can J Fish Aquat Sci 55:1759–1765

    Google Scholar 

  • Rilov G, Crooks JA (2009) Marine bioinvasions: conservation hazards and vehicles for ecological understanding. In: Rilov G, Crooks JA, Jeffrey A (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 1–9

    Google Scholar 

  • Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242

    PubMed  Google Scholar 

  • Rius M, Shenkar N (2012) Ascidian introductions through the Suez Canal: the case study of an Indo-Pacific species. Mar Pollut Bull 64:2060–2068

    CAS  PubMed  Google Scholar 

  • Rius M, Pascual M, Turon X (2008) Phylogeography of the widespread marine invader Microcosmus squamiger (Ascidiacea) reveals high genetic diversity of introduced populations and non-independent colonizations. Divers Distrib 14:818–828

    Google Scholar 

  • Rius M, Pineda MC, Turon X (2009) Population dynamics and life cycle of the introduced ascidian Microcosmus squamiger in the Mediterranean Sea. Biol Invasions 11:2181–2194

    Google Scholar 

  • Rius M, Heasman KG, McQuaid CD (2011) Long-term coexistence of non-indigenous species in aquaculture facilities. Mar Pollut Bull 62:2395–2403

    CAS  PubMed  Google Scholar 

  • Rius M, Turon X, Ordóñez V, Pascual M (2012) Tracking invasion histories in the sea: facing complex scenarios using multilocus data. PLoS One 7:e35815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rius M, Clusella-Trullas S, McQuaid CD, Navarro RA, Griffiths CL, Matthee CA, von der Heyden S, Turon X (2014a) Range expansions across ecoregions: interactions of climate changes, physiology and genetic diversity. Glob Ecol Biogeogr 23:76–88

    Google Scholar 

  • Rius M, Potter EE, Aguirre JD, Stachowicz JJ (2014b) Mechanisms of biotic resistance across complex life cycles. J Anim Ecol 83:296–305

    PubMed  Google Scholar 

  • Rius M, Bourne S, Hornsby HG, Chapman MA (2015a) Applications of next-generation sequencing to the study of biological invasions. Curr Zool 61:488–504

    Google Scholar 

  • Rius M, Turon X, Bernardi G, Volckaert FAM, Viard F (2015b) Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biol Invasions 17:869–885

    Google Scholar 

  • Robinson TB, Griffiths CL, McQuaid CD, Rius M (2005) Marine alien species of South Africa—status and impacts. Afr J Mar Sci 27:297–306

    Google Scholar 

  • Rocha RM (2002) Bostricobranchus digonas Abbott (Ascidiacea, Molgulidae) in Paranaguá Bay, Paraná, Brazil. A case of recent invasion? Rev Bras Zool 19:157–161

    Google Scholar 

  • Rodriguez LF, Ibarra-Obando SE (2008) Cover and colonization of commercial oyster (Crassostrea gigas) shells by fouling organisms in San Quintin Bay, Mexico. J Shellfish Res 27:337–343

    Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    PubMed  Google Scholar 

  • Ruiz GM, Carlton JT (2003) Invasion vectors: a conceptual framework for management. In: Ruiz GM, Carlton JT (eds) Invasive species: vectors and management strategies. Island Press, Washington, pp 459–504

    Google Scholar 

  • Sephton D, Vercaemer B, Nicolas JM, Keays J (2011) Monitoring for invasive tunicates in Nova Scotia, Canada (2006–2009). Aquat Invasions 6:391–403

    Google Scholar 

  • Shenkar N, Swalla BJ (2011) Global diversity of Ascidiacea. PLoS One 6:e20657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shenkar N, Zeldman Y, Loya Y (2008) Ascidian recruitment patterns on an artificial reef in Eilat (Red Sea). Biofouling 24:119–128

    PubMed  Google Scholar 

  • Simkanin C, Davidson IC, Dower JF, Jamieson G, Therriault TW (2012) Anthropogenic structures and the infiltration of natural benthos by invasive ascidians. Mar Ecol 33:499–511

    Google Scholar 

  • Stachowicz JJ, Fried H, Osman RW, Whitlatch RB (2002) Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83:2575–2590

    Google Scholar 

  • Stefaniak L, Lambert G, Gittenberger A, Zhang H, Lin S, Whitlatch RB (2009) Genetic conspecificity of the worldwide populations of Didemnum vexillum Kott, 2002. Aquat Invasions 4:29–44

    Google Scholar 

  • Stoner DS, Ben-shlomo R, Rinkevich B, Weissman IL (2002) Genetic variability of Botryllus schlosseri invasions to the east and west coasts of the USA. Mar Ecol Prog Ser 243:93–100

    Google Scholar 

  • Svane I, Young CM (1989) The ecology and behaviour of ascidian larvae. Oceanogr Mar Biol Annu Rev 27:45–90

    Google Scholar 

  • Sylvester F, Kalaci O, Leung B, Lacoursière-Roussel A, Murray CC, Choi FM, Bravo MA, Therriault TW, MacIsaac HJ (2011) Hull fouling as an invasion vector: Can simple models explain a complex problem? J Appl Ecol 48:415–423

    Google Scholar 

  • Teske PR (2014) Connectivity in solitary ascidians: Is a 24-h propagule duration sufficient to maintain large-scale genetic homogeneity? Mar Biol 161:2681–2687

    Google Scholar 

  • Teske PR, Sandoval-Castillo J, Waters JM, Beheregaray LB (2014) Can novel genetic analyses help to identify low-dispersal marine invasive species? Ecol Evol 4:2848–2886

    PubMed  PubMed Central  Google Scholar 

  • Therriault TW, Herborg LM (2008) Predicting the potential distribution of the vase tunicate Ciona intestinalis in Canadian waters: informing a risk assessment. ICES J Mar Sci 65:788–794

    Google Scholar 

  • Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MT, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573

    CAS  PubMed  Google Scholar 

  • Tsagkogeorga G, Turon X, Hopcroft RR, Tilak M, Feldstein T, Shenkar N, Loya Y, Huchon D, Douzery EJP, Delsuc F (2009) An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol Biol 9:187

    PubMed  PubMed Central  Google Scholar 

  • Turon X, Tarjuelo I, Duran S, Pasucal M (2003) Characterising invasion processes with genetic data: an Atlantic clade of Clavelina lepadiformis (Ascidiacea) introduced into Mediterranean harbours. Hydrobiologia 503:29–35

    Google Scholar 

  • Turon X, Nishikawa T, Rius M (2007) Spread of Microcosmus squamiger (Ascidiacea: Pyuridae) in the Mediterranean Sea and adjacent waters. J Exp Mar Biol Ecol 342:185–188

    Google Scholar 

  • United States Coast Guard (USCG) (1993) Ballast water management for vessels entering the Great Lakes. Code of Federal Regulations 33-CFR Part 151.1510

  • Valentine PC, Carman MR, Blackwood DS, Heffron EJ (2007) Ecological observations on the colonial ascidian Didemnum sp. in a new England tide pool habitat. J Exp Mar Biol Ecol 32:109–121

    Google Scholar 

  • van Name WG (1945) The North and South American Ascidians. Bull Am Nat Hist 84:1–463

    Google Scholar 

  • Vandepitte K, de Meyer T, Helsen K, van Acker K, Roldán-Ruiz I, Mergeay J, Honnay O (2014) Rapid genetic adaptation precedes the spread of an exotic plant species. Mol Ecol 23:2157–2164

    PubMed  Google Scholar 

  • Voskoboynik A, Neff NF, Sahoo D, Newman AM, Pushkarev D, Koh W, Passarelli B, Fan HC, Mantalas G, Palmeri KJ, Ishizuka KJ, Gissi C, Griggio F, Ben-shlomo R, Corey DM, Penland L, White RA III, Weissman IR, Quake SR (2013) The genome sequence of the colonial chordate, Botryllus schlosseri. Elife 2:e00569

    PubMed  PubMed Central  Google Scholar 

  • Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144

    PubMed  Google Scholar 

  • Wonham M, Carlton J (2005) Cool-temperate marine invasions at local and regional scales: the Northeast Pacific Ocean as a model system. Biol Invasions 7:369–392

    Google Scholar 

  • Wotton DM, Hewitt CL (2004) Marine biosecurity postborder management: developing incursion response systems for New Zealand. N Z J Mar Fresh 38:553–555

    Google Scholar 

  • Yamaguchi M (1975) Growth and reproductive cycles of the marine fouling ascidians Ciona intestinalis, Styela plicata, Botrylloides violaceus, and Leptoclinum mitsukurii at Aburatsubo-Moroiso Inlet (Central Japan). Mar Biol 29:253–259

    Google Scholar 

  • Zaniolo G, Manni L, Brunetti R, Burighel P (1998) Brood pouch differentiation in Botrylloides violaceus, a viviparous ascidian (Tunicata). Invertebr Reprod Dev 33:11–24

    Google Scholar 

  • Zhan A, MacIsaac HJ (2015) Rare biosphere exploration using high-throughput sequencing: research progress and perspective. Conserv Genet 16:513–522

    Google Scholar 

  • Zhan A, MacIsaac HJ, Cristescu ME (2010) Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity. Mol Ecol 19:4678–4694

    CAS  PubMed  Google Scholar 

  • Zhan A, Darling JA, Bock DG, Lacoursière-Roussel A, MacIsaac HJ, Cristescu ME (2012) Complex genetic patterns in closely related colonizing invasive species. Ecol Evol 2:1331–1346

    PubMed  PubMed Central  Google Scholar 

  • Zhan A, Hulák M, Sylvester F, Huang X, Adebayo AA, Abbott CL, Adamowicz SJ, Heath DD, Cristescu ME, MacIsaac HJ (2013) High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol Evol 4:558–565

    Google Scholar 

  • Zhan A, Bailey SA, Heath DD, MacIsaac HJ (2014a) Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities. Mol Ecol Resour 14:1049–1059

    CAS  PubMed  Google Scholar 

  • Zhan A, He S, Brown EA, Chain FJJ, Therriault TW, Abbott CL, Heath DD, Cristescu ME, MacIsaac HJ (2014b) Reproducibility of pyrosequencing data for biodiversity assessment in complex communities. Methods Ecol Evol 5:881–890

    Google Scholar 

Download references

Acknowledgments

Great thanks to two reviewers and the subject editor who provided valuable and constructive comments on the early versions of this manuscript. This work was supported by National Natural Science Foundation of China (31272665) and 100 Talents Program of the Chinese Academy of Sciences to A.Z., by a Natural Sciences and Engineering Research Council of Canada (NSERC) Vanier CGS and a Killam Doctoral Fellowship to D.G.B., and by an NSERC Discovery grant, the NSERC Canadian Aquatic Invasive Species Network (CAISN), and Canada Research Chair to H.J.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibin Zhan.

Additional information

Responsible Editor: F. Bulleri.

Reviewed by M. Rius and an undisclosed expert.

This article is part of the Topical Collection on Invasive Species.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, A., Briski, E., Bock, D.G. et al. Ascidians as models for studying invasion success. Mar Biol 162, 2449–2470 (2015). https://doi.org/10.1007/s00227-015-2734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2734-5

Keywords

Navigation