Skip to main content

Advertisement

Log in

Effects of food and CO2 on growth dynamics of polyps of two scyphozoan species (Cyanea capillata and Chrysaora hysoscella)

  • Original Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Increasing anthropogenic CO2 concentration in the atmosphere is altering sea water carbonate chemistry with unknown biological and ecological consequences. Whereas some reports are beginning to emerge on the effects of ocean acidification (OA) on fish, very little is known about the impact of OA on jellyfish. In particular, the benthic stages of metagenetic species are virtually unstudied in this context despite their obvious importance for bloom dynamics. Hence, we conducted tri-trophic food chain experiments using the algae Rhodomonas salina as the primary producer, the copepod Acartia tonsa as the primary consumer and the benthic life stage of the scyphozoans Cyanea capillata and Chrysaora hysoscella as secondary consumers. Two experiments were conducted examining the effects of different levels of CO2 and food quality (experiment 1) and the effect of food quality and quantity (experiment 2) on the growth and respiration of scyphozoan polyps. Polyp growth and carbon content (µg polyp−1) were not affected by the CO2 treatments, but were significantly negatively affected by P limitation of the food in C. capillata but not in Ch. hysoscella. Growth and carbon content were reduced in low-food treatments, but increased with decreasing P limitation in high- and low-food treatments in C. capillata. Respiration was not significantly influenced by food quality and quantity in C. capillata. We conclude that phosphorus can be a limiting factor affecting the fitness of scyphopolyps and that P-limited food is of poor nutritional quality. Furthermore, OA, at least using realistic end-of-century scenarios, will have no direct effect on the growth of scyphistomae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Attrill MJ, Edwards M (2008) Reply to Haddock, S. H. D. Reconsidering evidence for potential climate-related increases in jellyfish. Limnol Oceanogr 53:2763–2766

    Google Scholar 

  • Attrill MJ, Wright J, Edwards M (2007) Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol Oceanogr 52:480–485

    Article  Google Scholar 

  • Barz K, Hirche HJ (2007) Abundance, distribution and prey composition of scyphomedusae in the southern North Sea. Mar Biol 151:1021–1033

    Article  Google Scholar 

  • Bastian T, Haberlin D, Purcell JE, Hays GC, Davenport J, McAllen R, Doyle TK (2011) Large-scale sampling reveals the spatio-temporal distributions of the jellyfish Aurelia aurita and Cyanea capillata in the Irish Sea. Mar Biol 158:2639–2652

    Article  Google Scholar 

  • Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Change 2:38–41

    Article  CAS  Google Scholar 

  • Boero F, Bouillon J, Gravili C, Miglietta MP, Parsons T, Piraino S (2008) Gelatinous plankton: irregularities rule the world (sometimes). Mar Ecol Prog Ser 356:299–310

    Article  Google Scholar 

  • Boersma M (2000) The nutritional quality of P-limited algae for Daphnia. Limnol Oceanogr 45:1157–1161

    Article  CAS  Google Scholar 

  • Boersma M, Kreutzer C (2002) Life at the edge: is food quality really of minor importance at low quantities? Ecology 83:2552–2561

    Article  Google Scholar 

  • Boersma M, Aberle N, Hantzsche FM, Schoo KL, Wiltshire KH, Malzahn AM (2008) Nutritional limitation travels up the food chain. Int Rev Hydrobiol 93:479–488

    Article  Google Scholar 

  • Bradshaw AL, Brewer PG, Shafer DK, Williams RT (1981) Measurements of total carbon-dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth Planet Sci Lett 55:99–115

    Article  CAS  Google Scholar 

  • Brewer RH (1976) Larval settling behavior in Cyanea capillata (Cnidaria: Scyphozoa). Biol Bull 150:183–199

    Article  Google Scholar 

  • Brotz L, Cheung WWL, Kleisner K, Pakhomov E, Pauly D (2012) Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690:3–20

    Article  Google Scholar 

  • Condon RH, Decker MB, Purcell JE (2001) Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha). Hydrobiologia 451:89–95

    Article  Google Scholar 

  • Condon RH, Steinberg DK, del Giorgio PA, Bouvier TC, Bronk DA, Graham WM, Ducklow HW (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci USA 108:10225–10230

    Article  CAS  Google Scholar 

  • Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Purcell JE, Malej A, Mianzan H, Uye SI, Gelcich S, Madin LP (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62:160–169

    Article  Google Scholar 

  • Darchambeau F, Faerovig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:336–346

    Article  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 218.15 K. J Chem Thermodyn 22:113–127

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res A 34:1733–1743

    Article  CAS  Google Scholar 

  • Elser JJ, Dobberfuhl DR, Mackay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry. Bioscience 46:674–684

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  Google Scholar 

  • Frommel AY, Maneja R, Lowe D, Malzahn AM, Geffen AJ, Folkvord A, Piatkowski U, Reusch TBH, Clemmesen C (2012) Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat Clim Change 2:42–46

    Article  CAS  Google Scholar 

  • Frommel AY, Maneja R, Lowe D, Pascoe CK, Geffen AJ, Folkvord A, Piatkowski U, Clemmesen C (2014) Organ damage in Atlantic herring larvae as a result of ocean acidification. Ecol Appl 24:1131–1143

    Article  Google Scholar 

  • Gambill M, Peck MA (2014) Respiration rates of the polyps of four jellyfish species: potential thermal triggers and limits. J Exp Mar Biol Ecol 459:17–22

    Article  Google Scholar 

  • Gattuso JP, Hansson L (2011) Ocean acidification. Oxford University Press Inc, New York

    Google Scholar 

  • Gattuso JP, Mach KJ, Morgan G (2013) Ocean acidification and its impacts: an expert survey. Clim Change 117:725–738

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) gran. Can J Microb 8:229–239

    Article  CAS  Google Scholar 

  • Haddock SHD (2008) Reconsidering evidence for potential climate-related increases in jellyfish. Limnol Oceanogr 53:2759–2762

    Google Scholar 

  • Hay SJ, Hislop JRG, Shanks AM (1990) North Sea scyphomedusae; summer distribution, estimated biomass and significance particulary for 0-group gadoid fish. Neth J Sea Res 25:113–130

    Article  Google Scholar 

  • Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC (2004) Carbon, sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192

    Article  Google Scholar 

  • Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6(12):e28983

    Article  CAS  Google Scholar 

  • Holst S (2012a) Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia 690:127–140

    Article  Google Scholar 

  • Holst S (2012b) Morphology and development of benthic and pelagic life stages of North Sea jellyfish (Scyphozoa, Cnidaria) with special emphasis on the identification of ephyra stages. Mar Biol 159:2707–2722

    Article  Google Scholar 

  • Holst S, Jarms G (2007) Substrate choice and settlement preferences of planula larvae of five scyphozoa (Cnidaria) from German Bight, North Sea. Mar Biol 151:863–871

    Article  Google Scholar 

  • Holst S, Jarms G (2010) Effects of low salinity on settlement and strobilation of scyphozoa (Cnidaria): is the lion’s mane Cyanea capillata (L.) able to reproduce in the brackish Baltic Sea? Hydrobiologia 645:53–68

    Article  CAS  Google Scholar 

  • Holst S, Sotje I, Tiemann H, Jarms G (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol 151:1695–1710

    Article  Google Scholar 

  • Hood JM, Vanni MJ, Flecker AS (2005) Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia 146:247–257

    Article  Google Scholar 

  • Hoover RA, Armour R, Dow I, Purcell JE (2012) Nudibranch predation and dietary preference for the polyps of Aurelia labiata (Cnidaria: Scyphozoa). Hydrobiologia 690:199–213

    Article  CAS  Google Scholar 

  • Irigoien X, Head RN, Harris RP, Cummings D, Harbour D, Meyer-Harms B (2000) Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnol Oceanogr 45:44–54

    Article  Google Scholar 

  • Ito S, Rose A, Miller AJ, Drinkwater K, Brander K, Overland JE, Sundby S, Curchitser E, Hurrell JW, Yamanaka Y (2010) Ocean ecosystem responses to future global change scenarios: a way forward. In: Barange M, Field JG, Harris RP, Hofmann EE, Perry RI, Werner F (eds) Marine ecosystems and global change. Oxford University Press, New York, pp 287–322

    Chapter  Google Scholar 

  • Klein SG, Pitt KA, Rathjen KA, Seymour JE (2014) Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors. Glob Change Biol 20:28–37

    Article  Google Scholar 

  • Kogovsek T, Tinta T, Klun K, Malej A (2014) Jellyfish biochemical composition: importance of standardised sample processing. Mar Ecol Prog Ser 510:275–288

    Article  Google Scholar 

  • Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451:229–246

    Article  Google Scholar 

  • Lucas CH, Graham WM, Widmer C (2012) Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. In: Lesser M (ed) Advances in marine biology. Elsevier Academic Press Inc, San Diego, pp 133–196

    Google Scholar 

  • Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:R492–R493

    Article  CAS  Google Scholar 

  • Mackas DL, Batten S, Trudel M (2007) Effects on zooplankton of a warmer ocean: recent evidence from the Northeast Pacific. Prog Ocean 75:223–252

    Article  Google Scholar 

  • Malzahn AM, Boersma M (2009) Trophic flexibility in larvae of two fish species (lesser sandeel, Ammodytes marinus and dab, Limanda limanda). Sci Mar 73:131–139

  • Malzahn AM, Boersma M (2012) Effects of poor food quality on copepod growth are dose dependent and non-reversible. Oikos 121:1408–1416

    Article  Google Scholar 

  • Malzahn AM, Aberle N, Clemmesen C, Boersma M (2007) Nutrient limitation of primary producers affects planktivorous fish condition. Limnol Oceanogr 52:2062–2071

    Article  CAS  Google Scholar 

  • Malzahn AM, Hantzsche F, Schoo KL, Boersma M, Aberle N (2010) Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162:35–48

    Article  Google Scholar 

  • Mehrbach C, Culberso C, Hawley JE, Pytkowic R (1973) Measurement of apparent dissociation-constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Meunier CL, Boersma M, Wiltshire KH, Malzahn AM (2015) Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems. Oikos. doi:10.1111/oik.02072

  • Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68

    Article  Google Scholar 

  • Murray CS, Malvezzi A, Gobler CJ, Baumann H (2014) Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar Ecol Prog Ser 504:1–11

    Article  Google Scholar 

  • Nakano S (1994) Carbon:nitrogen:phosphorus ratios and nutrient regeneration of a heterotrophic flagellate fed on bacteria with different elemental ratios. Arch Hydrobiol 129:257–271

    CAS  Google Scholar 

  • Olariaga A, Guallart EF, Fuentes V, Lopez-Sanz A, Canepa A, Movilla J, Bosch M, Calvo E, Pelejero C (2014) Polyp flats, a new system for experimenting with jellyfish polyps, with insights into the effects of ocean acidification. Limnol Oceanogr Meth 12:212–222

    Google Scholar 

  • Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149

    Article  CAS  Google Scholar 

  • Pitt KA, Duarte CM, Lucas CH, Sutherland KR, Condon RH, Mianzan H, Purcell JE, Robinson KL, Uye SI (2013) Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS ONE 8(8):e72683

    Article  CAS  Google Scholar 

  • Purcell JE (2007) Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Mar Ecol Prog Ser 348:183–196

    Article  Google Scholar 

  • Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. In: Carlson CA, Giovannoni SJ (eds) Ann Rev Mar Sci, pp 209–235

  • Purcell JE, White JR, Nemazie DA, Wright DA (1999) Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Mar Ecol Prog Ser 180:187–196

    Article  Google Scholar 

  • Purcell JE, Uye S, Lo WT (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174

    Article  Google Scholar 

  • Purcell JE, Atienza D, Fuentes V, Olariaga A, Tilves U, Colahan C, Gili JM (2012) Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690:169–180

    Article  CAS  Google Scholar 

  • Purcell JE, Breitburg DL, Decker MB, Graham WM, Youngbluth MJ, Raskoff KA (2013) Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In: Rabalais NN, Turner RE (eds) Coastal hypoxia: consequences for living resources and ecosystems. American Geophysical Union, Washington, D.C

    Google Scholar 

  • Richardson AJ, Gibbons MJ (2008) Are jellyfish increasing in response to ocean acidification? Limnol Oceanogr 53:2040–2045

    Article  Google Scholar 

  • Robbins L, Hansen M, Kleypas J, Meylan S (2010) CO2calc—a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). US Geological Survey Open-File Report 1280

  • Rossoll D, Bermudez R, Hauss H, Schulz KG, Riebesell U, Sommer U, Winder M (2012) Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7(4):e34737

    Article  CAS  Google Scholar 

  • Russel FS (1970) The medusae of the British Isles Vol. II—Pelagic scyphozoa, with a supplement to vol I. Cambridge University Press, Cambridge

  • Ryther JH (1954) Inhibitory effects of phytoplankton upon the feeding of Daphnia magna with reference to growth, reproduction, and survival. Ecology 35:522–532

    Article  Google Scholar 

  • Sabates A, Pages F, Atienza D, Fuentes V, Purcell JE, Gili JM (2010) Planktonic cnidarian distribution and feeding of Pelagia noctiluca in the NW Mediterranean Sea. Hydrobiologia 645:153–165

    Article  Google Scholar 

  • Schoo KL, Aberle N, Malzahn AM, Boersma M (2010) Does the nutrient stoichiometry of primary producers affect the secondary consumer Pleurobrachia pileus? Aquat Ecol 44:233–242

    Article  CAS  Google Scholar 

  • Schoo KL, Aberle N, Malzahn AM, Boersma M (2012) Food quality affects secondary consumers even at low quantities: an experimental test with larval european lobster. PLoS ONE 7(3):e33550

    Article  CAS  Google Scholar 

  • Schoo KL, Malzahn AM, Krause E, Boersma M (2013) Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore. Mar Biol 160:2145–2155

    Article  CAS  Google Scholar 

  • Sterner RW, Robinson JL (1994) Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnol Oceanogr 39:1228–1232

    Article  Google Scholar 

  • Sterner RW, Clasen J, Lampert W, Weisse T (1998) Carbon: phosphorus stoichiometry and food chain production. Ecol Lett 1:146–150

    Article  Google Scholar 

  • Toyokawa M (2011) First record of wild polyps of Chrysaora pacifica (Goette, 1886) (Scyphozoa, Cnidaria). Plankton Benthos Res 6:175–177

    Article  Google Scholar 

  • Urabe J, Watanabe Y (1992) Possibility of N or P limitation for planktonic cladocerans: an experimental test. Limnol Oceanogr 37:244–251

    Article  CAS  Google Scholar 

  • Urabe J, Togari J, Elser JJ (2003) Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Glob Change Biol 9:818–825

    Article  Google Scholar 

  • van der Zee C, Chou L (2005) Seasonal cycling of phosphorus in the southern bight of the North Sea. Biogeosciences 2:27–42

    Article  Google Scholar 

  • Verschoor AM, Van Dijk MA, Huisman J, Van Donk E (2013) Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw Biol 58:597–611

    Article  CAS  Google Scholar 

  • Webster CN, Lucas CH (2012) The effects of food and temperature on settlement of Aurelia aurita planula larvae and subsequent somatic growth. J Exp Mar Biol Ecol 436:50–55

    Article  Google Scholar 

  • Winans AK, Purcell JE (2010) Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata. Hydrobiologia 645:39–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of our colleagues, particularly Katherina L. Schoo and Cédric L. Meunier. Special thanks are due to Bettina Oppermann, Julia Haafke, Saskia Ohse and Petra Schneider for technical support. This project was funded in part by the Deutsche Forschungsgemeinschaft (DFG) project “Physical and Physiological Growth Constraints of Key, North Sea Gelatinous Zooplankton” (MA 4501/3-1 and PE 1157/3-1). This study was also part of the BIOACID Project (03F0655A), funded by the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Lesniowski.

Additional information

Communicated by J. E. Purcell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesniowski, T.J., Gambill, M., Holst, S. et al. Effects of food and CO2 on growth dynamics of polyps of two scyphozoan species (Cyanea capillata and Chrysaora hysoscella). Mar Biol 162, 1371–1382 (2015). https://doi.org/10.1007/s00227-015-2660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2660-6

Keywords

Navigation