Skip to main content
Log in

Laboratory conditioning modifies properties of gills mitochondria from the Pacific oyster Crassostrea gigas

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Although laboratory experiments allow greater control of environmental conditions than field studies, they have several drawbacks. To analyze physiological responses to forcing environmental variables, experimental conditions should mimic natural conditions as closely as possible. For filter-feeding organisms in particular, diet quality and quantity is one of the environmental parameters that can differ markedly between experimental and field conditions. In the hatchery, Pacific oysters, Crassostrea gigas, commonly show good physiological performance and growth on a mixed algal diet of Tisochrysis lutea, formerly Isochrysis aff. galbana clone Tahiti (T-Iso), and Chaetoceros calcitrans, presumably as it provides a good supply of essential polyunsaturated fatty acids (PUFA) as 20:4n-6, 20:5n-3 and 22:6n-3. The present study tests whether the fluctuating biotic and abiotic conditions in the field modify the structure and function of oyster mitochondria. One group of oysters was maintained in the intertidal zone, and the other group was fed the mixed diet in a nearby experimental hatchery under salinity and temperature conditions equivalent to those in the field. After 4 weeks of conditioning, the functional capacities and membrane lipid composition of gill mitochondria were measured. For essential polyunsaturated fatty acids, only the proportion of 20:5n-3 differed between field and laboratory oysters, and confirmed the capacity of the mixed diet T-Iso + C. gracilis, to provide the essential PUFA. Nevertheless, proportions of other FA (e.g., 22:5n-6 and non-methylene-interrupted FA) differed markedly between laboratory and field-conditioned oysters. Mitochondrial oxygen uptake, cytochrome c oxidase activity, content of cardiolipin and concentration of cytochrome b were significantly lower in laboratory-conditioned than in field-conditioned oysters. These results indicate that laboratory conditioning, although allowing similar growth and gonad maturation, only partially mimics conditions that allow C. gigas to maintain mitochondrial function. Although our experimental design cannot ascertain what difference between experimental laboratory and field conditions led to changes in membrane composition and mitochondrial function, differences in nutritional quality (other than known essential PUFA) and abiotic factors (e.g., oxygen availability, emersion or daily temperature fluctuations) had a major impact on mitochondrial properties in oysters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott SK, Else PL, Atkins TA, Hulbert AJ (2012) Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. BBA Biomembr 1818:1309–1317

    Article  CAS  Google Scholar 

  • Ames BN, Atamna H, Killilea DW (2005) Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Mol Asp Med 26:363–378

    Article  CAS  Google Scholar 

  • Astorg PO, Chevalier J (1991) Phospholipid fatty acid composition and respiratory properties of heart and liver mitochondria from rats fed with or deprived of linolenic acid. Nutr Res 11:71–77

    Article  CAS  Google Scholar 

  • Barnathan G (2009) Non-methylene-interrupted fatty acids from marine invertebrates: occurrence, characterization and biological properties. Biochimie 91:671–678

    Article  CAS  Google Scholar 

  • Blier PU, Lemieux H (2001) The impact of the thermal sensitivity of cytochrome c oxidase on the respiration rate of Arctic charr red muscle mitochondria. J Comp Physiol B 171:247–253

    Article  CAS  Google Scholar 

  • Böttinger L, Horvath SE, Kleinschroth T, Hunte C, Daum G, Pfanner N, Becker T (2012) Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J Mol Biol 423:677–686

    Article  Google Scholar 

  • Boutilier RG, St-Pierre J (2002) Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression. J Exp Biol 205:2287–2296

    CAS  Google Scholar 

  • Bremer K, Moyes CD (2011) Origins of variation in muscle cytochrome c oxidase activity within and between fish species. J Exp Biol 214:1888–1895

    Article  Google Scholar 

  • Brown MR (2002) Nutritional value of microalgae for aquculture. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortés MG, Simoes N (eds) Avances En Nutrición Acuícola VI. Memorias Del VI Simposium Internacional De Nutrición Acuícola, Cancún

    Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan G (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  • Delaporte M, Soudant P, Moal J, Lambert C, Quéré C, Miner P, Choquet G, Paillard C, Samain JF (2003) Effect of a mono-specific algal diet on immune functions in two bivalve species—Crassostrea gigas and Ruditapes philippinarum. J Exp Biol 206:3053–3064

    Article  CAS  Google Scholar 

  • Delaporte M, Soudant P, Moal J, Kraffe E, Marty Y, Samain JF (2005) Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comp Biochem Phys A 140:460–470

    Article  Google Scholar 

  • Delaporte M, Soudant P, Moal J, Giudicelli E, Lambert C, Séguineau C, Samain JF (2006) Impact of 20:4n-6 supplementation on the fatty acid composition and hemocyte parameters of the Pacific oyster Crassostrea gigas. Lipids 41:567–576

    Article  CAS  Google Scholar 

  • Delaunay F, Marty Y, Moal J, Samain JF (1993) The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J Exp Mar Biol Ecol 173:163–179

    Article  CAS  Google Scholar 

  • Dudognon T, Soudant P, Seguineau C, Quere C, Auffret M, Kraffe E (2013) Functional capacities of gill mitochondria in oyster Crassostrea gigas during an emersion/immersion tidal cycle. Aquat Living Resour 26:249–256

    Article  CAS  Google Scholar 

  • Dudognon T, Soudant P, Lambert C, Quere C, Auffret M, Kraffe E (2014) Mitochondrial activity, hemocyte parameters and lipid composition modulation by dietary conditioning in the Pacific oyster Crassostrea gigas. J Comp Physiol B 184:303–317

    Article  CAS  Google Scholar 

  • Enright CT, Newkirk GF, Craigie JS, Castell JD (1986) Growth of juvenile Ostrea edulis L. fed Chaetoceros gracilis Schutt of varied biochemical composition. J Exp Mar Biol Ecol 96:15–26

    Article  CAS  Google Scholar 

  • Enríquez-Díaz M, Pouvreau S, Chávez-Villalba J, Le Pennec M (2009) Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: evidence of an environment-dependent strategy. Aquacult Int 17:491–506

    Article  Google Scholar 

  • Epifanio CE (1979) Growth in bivalve molluscs: nutritional effects of two or more species of algae in diets fed to the American oyster Crassostrea virginica (Gmelin) and the hard clam Mercenaria mercenaria (L.). Aquaculture 18:1–12

    Article  CAS  Google Scholar 

  • Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. In: Estabrook RW, Pullman ME (eds) Oxidation and Phosphorylation. Academic Press, New York, pp 41–47

    Chapter  Google Scholar 

  • Farias A, Uriarte I (2006) Nutrition in pectinids. In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture. Elsevier, Amsterdam, pp 521–542

    Chapter  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Frick NT, Bystriansky JS, Ip YK, Chew SF, Ballantyne JS (2010) Cytochrome c oxidase is regulated by modulations in protein expression and mitochondrial membrane phospholipid composition in estivating African lungfish. Am J Physiol Reg Integr Comp Physiol 298:608–616

    Article  Google Scholar 

  • Gillis TE, Ballantyne JS (1999) Influences of subzero thermal acclimation on mitochondrial membrane composition of temperate zone marine bivalve mollusks. Lipids 34:59–66

    Article  CAS  Google Scholar 

  • Glémet HC, Ballantyne JS (1995) Influences of environmental salinity on the structure and function of gill mitochondrial membranes of an osmoconforming invertebrate, Crassostrea virginica. Mar Biol 121:673–683

    Article  Google Scholar 

  • Groen AK, Wanders RJ, Westerhoff HV, Van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–2757

    CAS  Google Scholar 

  • Guderley H (2004) Metabolic responses to low temperature in fish muscle. Biol Rev 79:409–427

    Article  Google Scholar 

  • Guderley H, Turner N, Else PL, Hulbert AJ (2005) Why are some mitochondria more powerful than others: insights from comparisons of muscle mitochondria from three terrestrial vertebrates. Comp Biochem Phys B 142:172–180

    Article  Google Scholar 

  • Guderley H, Kraffe E, Bureau W, Bureau DP (2008) Dietary fatty acid composition changes mitochondrial phospholipids and oxidative capacities in rainbow trout red muscle. J Comp Physiol B 178:385–399

    Article  CAS  Google Scholar 

  • Guderley H, Brokordt K, Pérez Cortes HM, Marty Y, Kraffe E (2011) Diet and performance in the scallop, Argopecten purpuratus: force production during escape responses and mitochondrial oxidative capacities. Aquat Living Resour 24:261–271

    Article  CAS  Google Scholar 

  • Guerra C, Maeda-Martínez AN, Hernandez-Llamas A, Sicard-González MT, Koenigstein S, Abele D, Philipp EER (2012) The influence of temperature and presence of predators on growth, survival and energy allocation for reproduction in the Catarina scallop Argopecten ventricosus. Aquac Res 43:756–766

    Article  Google Scholar 

  • Haines TH, Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 528:35–39

    Article  CAS  Google Scholar 

  • Hamza N, Mhetli M, Khemis IB, Cahu C, Kestemont P (2008) Effect of dietary phospholipid levels on performance, enzyme activities and fatty acid composition of pikeperch (Sander lucioperca) larvae. Aquaculture 275:274–282

    Article  CAS  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    Article  CAS  Google Scholar 

  • Hirunpanich V, Sethabouppha B, Sato H (2007) Inhibitory effects of saturated and polyunsaturated fatty acids on the cytochrome P450 3A activity in rat liver microsomes. Biol Pharm Bull 30:1586–1588

    Article  CAS  Google Scholar 

  • Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theor Biol 199:257–274

    Article  CAS  Google Scholar 

  • Hurtado MA, Ramírez JL, Rodríguez-Jaramillo C, Tovar D, Ibarra AM, Soudant P, Palacios E (2009) Comparison of continuous and batch feeding systems on maturation, biochemical composition and immune variables of the oyster Crassostrea corteziensis (Hertlein 1951). Aquacul Res 40:464–472

    Article  CAS  Google Scholar 

  • Kagan VE, Epand RM (2014) Deciphering the mysteries of cardiolipins in mitochondria. Chem Phys Lipids 179:1–2

    Article  CAS  Google Scholar 

  • Khairallah RJ, Kim J, O’Shea KM, O’Connell KA, Brown BH, Galvao T, Daneault C, Rosiers CD, Polster BM, Hoppel CL, Stanley WC (2012) Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids. PLoS ONE 7(3):e34402. doi:10.1371/journal.pone.0034402

    Article  CAS  Google Scholar 

  • Kraffe E, Soudant P, Marty Y (2004) Fatty acid composition of serine, ethanolamine and choline plasmalogens in some marine bivalves. Lipids 39(1):59–66

    Article  CAS  Google Scholar 

  • Kraffe E, Marty Y, Guderley H (2007) Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. J Exp Biol 210:149–165

    Article  CAS  Google Scholar 

  • Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specific roles of protein–phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20:6591–6600

    Article  CAS  Google Scholar 

  • Latendresse JR, Warbrittion AR, Jonassen H, Creasy DM (2002) Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol Pathol 30:524–533

    Article  Google Scholar 

  • Le Grand F, Kraffe E, Marty Y, Donaghy L, Soudant P (2011) Membrane phospholipid composition of hemocytes in the Pacific oyster Crassostrea gigas and the Manila clam Ruditapes philippinarum. Comp Biochem Phys A 159:383–391

    Article  Google Scholar 

  • Le Grand F, Soudant P, Marty Y, Le Goïc N, Kraffe E (2013) Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia. Chem Phys Lipids 167–168:9–20

    Article  Google Scholar 

  • Leary SC, Lyons CN, Rosenberger AG, Ballantyne JS, Stillman J, Moyes CD (2003) Fiber-type differences in muscle mitochondrial profiles. Am J Physiol Reg Integr Comp Physiol 285:817–826

    Article  Google Scholar 

  • Lemieux H, Blier PU, Tardif JC (2008) Does membrane fatty acid composition modulate mitochondrial functions and their thermal sensitivities? Comp Biochem Phys A 149:20–29

    Article  CAS  Google Scholar 

  • Leonard F, Haag M, Kruger MC (2001) Modulation of intestinal vitamin D receptor availability and calcium ATPase activity by essential fatty acids. Prostag Leukotr Ess 64:147–150

    Article  CAS  Google Scholar 

  • Mann R (1979) Some biochemical and physiological aspects of growth and gametogenesis in Crassostrea gigas and Ostrea edulis grown at sustained elevated temperatures. J Mar Biol Assoc UK 59:95–110

    Article  CAS  Google Scholar 

  • Marshall R, McKinley S, Pearce CM (2010) Effects of nutrition on larval growth and survival in bivalves. Rev Aquacult 2:33–55

    Article  Google Scholar 

  • Martin N, Bureau DP, Marty Y, Kraffe E, Guderley H (2013) Dietary lipid quality and mitochondrial membrane composition in trout: responses of membrane enzymes and oxidative capacities. J Comp Physiol B 183:393–408

    Article  CAS  Google Scholar 

  • Martínez G, Aguilera C, Mettifogo L (2000) Interactive effects of diet and temperature on reproductive conditioning of Argopecten purpuratus broodstock. Aquaculture 183:149–159

    Article  Google Scholar 

  • Marty Y, Delaunay F, Moal J, Samain JF (1992) Changes in the fatty acid composition of Pecten maximus (L.) during larval development. J Exp Mar Biol Ecol 163:221–234

    Article  CAS  Google Scholar 

  • Mike LM, Bricelj VM, Parrish CC (2008) Biochemical characterization and nutritional value of three Pavlova spp. in unialgal and mixed diets with Chaetoceros muelleri for postlarval sea scallops, Placopecten magellanicus. Aquaculture 276:130–142

    Article  Google Scholar 

  • Moya-Falcón C, Hvattum E, Dyrøy E, Skorve J, Stefansson SO, Thomassen MS, Jakobsen JV, Berge RK, Ruyter B (2004) Effects of 3-thia fatty acids on feed intake, growth, tissue fatty acid composition, beta-oxidation and Na + , K + -ATPase activity in Atlantic salmon. Comp Biochem Phys B 139:657–668

    Article  Google Scholar 

  • Munro D, Blier PU (2012) The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes. Aging Cell 11:845–855

    Article  CAS  Google Scholar 

  • Oliveros LB, Domeniconi MA, Vega VA, Gatica LV, Brigada AM, Gimenez MS (2007) Vitamin A deficiency modifies lipid metabolism in rat liver. Brit J Nutr 97:263–272

    Article  CAS  Google Scholar 

  • Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E (1997) Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Lett 406:136–138

    Article  CAS  Google Scholar 

  • Pennarun A-L, Prost C, Haure J, Demaimay M (2003) Comparison of two microalgal diets. 1. Influence on the biochemical and fatty acid compositions of raw oysters (Crassostrea gigas). J Agr Food Chem 51:2006–2010

    Article  CAS  Google Scholar 

  • Pernet F, Bricelj VM, Parrish CC (2005) Effect of varying dietary levels of ω6 polyunsaturated fatty acids during early ontogeny of the sea scallop Placopecten magellanicus. J Exp Mar Biol Ecol 327:115–133

    Article  CAS  Google Scholar 

  • Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G (2003) Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J 17:714–716

    Article  CAS  Google Scholar 

  • Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385

    Article  CAS  Google Scholar 

  • Pronker AE, Nevejan NM, Peene F, Geijsen P, Sorgeloos P (2008) Hatchery broodstock conditioning of the blue mussel Mytilus edulis (Linnaeus 1758). Part I. Impact of different micro-algae mixtures on broodstock performance. Aquacult Int 16:297–307

    Article  Google Scholar 

  • Racotta IS, Ramírez JL, Avila S, Ibarra AM (1998) Biochemical composition of gonad and muscle in the catarina scallop, Argopecten ventricosus, after reproductive conditioning under two feeding systems. Aquaculture 163:111–122

    Article  CAS  Google Scholar 

  • Rico-Villa B, Le Coz JR, Mingant C, Robert R (2006) Influence of phytoplankton diet mixtures on microalgae consumption, larval development and settlement of the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture 256:377–388

    Article  CAS  Google Scholar 

  • Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25:153–163

    Article  CAS  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Article  CAS  Google Scholar 

  • Sedlák E, Panda M, Dale MP, Weintraub ST, Robinson NC (2006) Photolabeling of cardiolipin binding subunits within bovine heart cytochrome c oxidase. Biochemistry 45:746–754

    Article  Google Scholar 

  • Senault C, Yazbeck J, Goubern M, Portet R, Vincent M, Gallay J (1990) Relation between membrane phospholipid composition, fluidity and function in mitochondria of rat brown adipose tissue. Effect of thermal adaptation and essential fatty acid deficiency. Biochim Biophys Acta 1023:283–289

    Article  CAS  Google Scholar 

  • Soudant P, Marty Y, Moal J, Robert R, Quéré C, Le Coz JR, Samain JF (1996a) Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143:361–378

    Article  CAS  Google Scholar 

  • Soudant P, Marty Y, Moal J, Samain J (1996b) Fatty acids and egg quality in great scallop. Aquacult Int 4:191–200

    Article  Google Scholar 

  • Soudant P, Moal J, Marty Y, Samain JF (1996c) Impact of the quality of dietary fatty acids on metabolism and the composition of polar lipid classes in female gonads of Pecten maximus (L.). J Exp Mar Biol Ecol 205:149–163

    Article  CAS  Google Scholar 

  • Soudant P, Van Ryckeghem K, Marty Y, Moal J, Samain JF, Sorgeloos P (1999) Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea gigas. Comp Biochem Phys B 123:209–222

    Article  Google Scholar 

  • St-Pierre J, Brand MD, Boutilier RG (2000) The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs. J Exp Biol 203:1469–1476

    CAS  Google Scholar 

  • Stuart JA, Gillis TE, Ballantyne JS (1998) Compositional correlates of metabolic depression in the mitochondrial membranes of estivating snails. Am J Physiol Regul Integr Comp Physiol 275:1977–1982

    Google Scholar 

  • Sussarellu R, Dudognon T, Fabioux C, Soudant P, Moraga D, Kraffe E (2013) Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster Crassostrea gigas. J Exp Biol 216:1561–1569

    Article  CAS  Google Scholar 

  • Utting SD, Millican PF (1997) Techniques for the hatchery conditioning of bivalve broodstocks and the subsequent effect on egg quality and larval viability. Aquaculture 155:45–54

    Article  Google Scholar 

  • Utting SD, Spencer BE (1991) The hatchery culture of bivalve mollusc larvae and juveniles. Laboratory Leaflet, Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research, Lowestoft (68)

  • Williams JN Jr (1964) A method for the simultaneous quantitative estimation of cytochromes a, b, c1, and c in mitochondria. Arch Biochem Biophys 107:537–543

    Article  CAS  Google Scholar 

  • Yamaoka S, Urade R, Kito M (1988) Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil. J Nutr 118:290–296

    CAS  Google Scholar 

  • Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC, Matak-Vinković D, Murata T, Bernal RA, Stock D, Robinson CV (2011) Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334:380–385

    Article  CAS  Google Scholar 

  • Zhukova NV (1991) The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comp Biochem Phys 100B:801–804

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all co-workers from the Argenton experimental station for taking care of oysters during the experimental conditioning. Many thanks to Marc Long for helping in tissue grinding and lipid analysis, to Caroline Fabioux and Jean-Philippe Beguel for helping in dissections, to Rossana Sussarellu for helping in mitochondrial preparations. Tony Dudognon’s fellowship was provided by the French Research Ministry. Funding for the experiment was provided by the project in Europole Mer (research consortium on marine science and technology in Brittany, France): LIPIDOMITO. The corresponding author also would like to thank Citlali Guerra for the discussions and ideas that made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard Kraffe.

Additional information

Communicated by H. O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudognon, T., Guderley, H., Quere, C. et al. Laboratory conditioning modifies properties of gills mitochondria from the Pacific oyster Crassostrea gigas . Mar Biol 162, 1033–1045 (2015). https://doi.org/10.1007/s00227-015-2646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2646-4

Keywords

Navigation