Skip to main content
Log in

Shell growth, microstructure and composition over the development cycle of the European abalone Haliotis tuberculata

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The shell of the European abalone Haliotis tuberculata is a model for studying mechanisms of mollusc shell formation, but the early steps of shell formation and calcification remain poorly documented. The microstructure and the mineralogical and geochemical composition of larval and juvenile shells were investigated by scanning electron microscopy, infrared spectroscopy and ion microprobe analyses (NanoSIMS). Analyses were performed on shells obtained from controlled fertilisations at the hatchery France-Haliotis (Plouguerneau, France) in July 2009 and 2010 using abalone from Roscoff. Shell cross sections revealed the microstructural arrangement of the developing shell, showing progressive biomineral organisation into two differentiated layers, i.e. the outer granular and the internal nacreous layer. Infrared analysis confirmed that the European abalone shell, at every stage of development, was mostly composed of CaCO3 in the form of aragonite. Variations in trace element composition, i.e. Sr/Ca, were measured in the different stages and correlated with micro-structural changes in the shells. Experimental manganese labelling of live abalones produced cathodoluminescence marks in the growing shell sections. The increase in shell thickness can be used to determine the growth rate of an early adult abalone shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auzoux-Bordenave S, Badou A, Gaume B, Berland S, Helléouet M-N, Milet C, Huchette S (2010) Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata. J Struct Biol 171:277–290. doi:10.1016/j.jsb.2010.05.012

    Article  CAS  Google Scholar 

  • Bice KL, Layne GD, Dahl K (2005) Application of secondary ion mass spectrometry to the determination of Mg/Ca in rare, delicate, or altered planktonic foraminifera: examples from the Holocene, Paleogene, and Cretaceous. Geochem Geophys Geosyst 6:1–13. doi:10.1029/2005gc000974

    Article  Google Scholar 

  • Bøggild OB (1930) The shell structure of the mollusks. Det Kongelige Danske Videnskabernes Selskab Skrifter-Naturvidenskabelig og Mathematisk Afdeling 9:231–326

  • Brahmi C, Meibom A, Smith D, Stolarski J, Auzoux-Bordenave S, Nouet J, Doumenc D, Djediat C, Domart-Coulon I (2010) Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia. Coral Reefs 29:175–189

    Article  Google Scholar 

  • Carre M, Bentaleb I, Bruguier O, Ordinola E, Barrett N, Fontugne M (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim Cosmochim Acta 70:4906–4920. doi:10.1016/j.gca.2006.07.019

    Article  CAS  Google Scholar 

  • Chateigner D, Hedegaard C, Wenk HR (2000) Mollusc shell microstructures and crystallographic textures. J Struct Geol 22:1723–1735

    Article  Google Scholar 

  • Clavier J, Richard O (1986) Growth of juvenile Haliotis tuberculata (Mollusca: Gastropoda) in their natural environment. J Mar Biol Assoc UK 66:497–503

    Article  Google Scholar 

  • Dauphin Y, Cuif J-P, Mutvei H, Denis A (1989) Mineralogy, chemistry and ultrastructure of the external shell-layer in ten species of Haliotis with reference to Haliotis tuberculata (Mollusca: Archaeogastropoda). Bull Geol Inst Univ Uppsala 15:7–38

    Google Scholar 

  • Dauphin Y, Cuif J-P, Castillo-Michel H, Chevallard C, Farre B, Meibom A (2014) Unusual micrometric calcite–aragonite interface in the abalone shell Haliotis (Mollusca, Gastropoda). Microsc Microanal 20:276–284. doi:10.1017/S1431927613013718

    Article  CAS  Google Scholar 

  • Gaume B, Fouchereau-Peron M, Badou A, Helléouet M-N, Huchette S, Auzoux-Bordenave S (2011) Biomineralization markers during early shell formation in the European abalone Haliotis tuberculata, Linnaeus. Mar Biol 158:341–353. doi:10.1007/s00227-010-1562-x

    Article  CAS  Google Scholar 

  • Gendron-Badou A, Coradin T, Maquet J, Fröhlich F, Livage J (2003) Spectroscopic characterization of biogenic silica. J Non-Cryst Solids 316:331–337

    Article  CAS  Google Scholar 

  • Gillikin DP, Lorrain A, Navez J, Taylor JW, André L, Keppens E, Baeyens W, Dehairs F (2005) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochem Geophys Geosyst 6:1–15

    Article  Google Scholar 

  • Guo D-J (2010) Microstructure and crystallography of abalone shells. Thesis, Research Master Degree, Glasgow

  • Hawkes GP, Day RW, Wallace MW, Nugent KW, Bettiol AA, Jamieson DN, Williams MC (1996) Analyzing the growth and form of mollusc shell layers, in situ, by cathodoluminescence microscopy and Raman spectroscopy. J Shellfish Res 15:659–666

    Google Scholar 

  • Heinemann F, Launspach M, Gries K, Fritz M (2011) Gastropod nacre: structure, properties and growth: biological, chemical and physical basics. Biophys Chem 153:126–153. doi:10.1016/j.bpc.2010.11.003

    Article  CAS  Google Scholar 

  • Jackson A, Vincent J, Turner R (1990) Comparison of nacre with other ceramic composites. J Mater Sci 25:3173–3178

    Article  CAS  Google Scholar 

  • Jackson DJ, Wörheide G, Degnan BM (2007) Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 7:160. doi:10.1186/1471-2148-7-160

    Article  Google Scholar 

  • Jardillier E, Rousseau M, Gendron-Badou A, Fröhlich F, Smith D, Martin M, Helléouet M-N, Huchette S, Doumenc D, Auzoux-Bordenave S (2008) A morphological and structural study of the larval shell from the abalone Haliotis tuberculata. Mar Biol 154:735–744

    Article  Google Scholar 

  • Jones GC, Jackson B (1993) Infrared transmission spectra of carbonate minerals. Chapman & Hall, London

    Book  Google Scholar 

  • Kinsman DJJ, Holland HD (1969) Co-precipitation of cations with CaCO3 IV. Co-precipitation of Sr2+ with aragonite between 16° and 96°C. Geochim Cosmochim Acta 33:1–17

    Article  CAS  Google Scholar 

  • Klein RT, Lohmann KC, Thayer CW, January R (1996) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity and carbon isotopic composition of seawater. Science 60:4207–4221

    CAS  Google Scholar 

  • Lartaud F, de Rafelis M, Ropert M, Emmanuel L, Geairon P, Renard M (2010) Mn labelling of living oysters: artificial and natural cathodoluminescence analyses as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells. Aquaculture 300:206–217. doi:10.1016/j.aquaculture.2009.12.018

    Article  Google Scholar 

  • Lazareth CE, Guzman N, Poitrasson F, Candaudap F, Ortlieb L (2007) Nyctemeral variations of magnesium intake in the calcitic layer of a Chilean mollusk shell (Concholepas concholepas, Gastropoda). Geochim Cosmochim Acta 71:5369–5383

    Article  CAS  Google Scholar 

  • Lazareth CE, Le Cornec F, Candaudap F, Freydier R (2013) Trace element heterogeneity along isochronous growth layers in bivalve shell: consequences for environmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 373:39–49. doi:10.1016/j.palaeo.2011.04.024

    Article  Google Scholar 

  • Lin A, Meyers MA (2005) Growth and structure in abalone shell. Mat Sci Eng A 390:27–41

    Article  Google Scholar 

  • Lorrain A, Gillikin DP, Le Mercier A (2005) Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology 12:965–968

    Article  Google Scholar 

  • Mahé K, Bellamy E, Lartaud F, de Rafélis M (2010) Calcein and manganese experiments for marking the shell of the common cockle (Cerastoderma edule): tidal rhythm validation of increments formation. Aquat Living Res 23:239–245. doi:10.1051/alr/2010025

    Article  Google Scholar 

  • Meibom A, Cuif J-P, Houlbreque F, Mostefaoui S, Dauphin Y, Meibom KL, Dunbar R (2008) Compositional variations at ultra-structure length scales in coral skeleton. Geochim Cosmochim Acta 72:1555–1569

    Article  CAS  Google Scholar 

  • Mutvei H, Dauphin Y, Cuif J-P (1985) Observations sur l’organisation de la couche externe du test des Haliotis (Gastropoda): un cas exceptionnel de la variabilité minéralogique et microstructurale. Bulletin du Muséum national d’Histoire naturelle, Paris, 4e série 7, section A, 1:73–91

  • Nakahara H, Bevelander G, Kakei M (1982) Electron microscopic and amino acid studies on the outer and inner shell layers of Haliotis rufescens. Venus (Japan J Malacol), pp 33–46

  • Pichard C, Fröhlich F (1986) Analyses infrarouges quantitatives des sédiments. Exemple du dosage du quartz et de la calcite. Revue de l’Institut français du Pétrole 41:809–819

    CAS  Google Scholar 

  • Purton L, Shields G, Brasier M, Grime G (1999) Metabolism controls Sr/Ca ratios in fossil aragonitic mollusks. Geology 27:1083–1086

    Article  Google Scholar 

  • Purton-Hildebrand LMA, Shields GA, Brasier MD (2001) The use of external micro-PIXE to investigate the factors determining the Sr:Ca ratio in the shells of fossil aragonitic molluscs. Science 181:506–510

    CAS  Google Scholar 

  • Roussel S, Huchette S, Clavier J, Chauvaud L (2011) Growth of the European abalone (Haliotis tuberculata L.) in situ: seasonality and ageing using stable oxygen isotopes. J Sea Res 65:213–218. doi:10.1016/j.seares.2010.10.001

    Article  Google Scholar 

  • Su X, Belcher AM, Zaremba CM, Morse DE, Stucky GD, Heuer AH (2002) Structural and microstructural characterization of the growth lines and prismatic microarchitecture in red abalone shell and the microstructures of abalone “flat pearls”. Chem Mater 14:3106–3117

    Article  CAS  Google Scholar 

  • Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. In: Dove PM, De Yoreo JJ, Weiner S (eds) Biomineralization. American Mineralogical Society, Washington, DC, pp 1–29

  • Zacherl DC, Paradis G, Lea DW (2003) Barium and strontium uptake into larval protoconchs and statoliths of the marine neogastropod Kelletia kelletii. Geochim Cosmochim Acta 67:4091–4099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed in part by the ATM program “Biomineralisation” of the MNHN funded by the Ministère délégué à l’Enseignement Supérieur et à la Recherche (Paris, France). We thank Pr Anders Meibom for the facilities and assistance for the NanoSIMS analysis ion microprobe (Muséum national d’Histoire naturelle, Paris, France). We are grateful to Claire E. Lazareth (UMR LOCEAN, Bondy, France) for her kind reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Auzoux-Bordenave.

Additional information

Communicated by J. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auzoux-Bordenave, S., Brahmi, C., Badou, A. et al. Shell growth, microstructure and composition over the development cycle of the European abalone Haliotis tuberculata . Mar Biol 162, 687–697 (2015). https://doi.org/10.1007/s00227-015-2615-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2615-y

Keywords

Navigation