Skip to main content
Log in

Stable isotopes identify an ontogenetic niche expansion in Antarctic krill (Euphausia superba) from the South Shetland Islands, Antarctica

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Antarctic krill (Euphausia superba) occupy a key position in the Southern Ocean linking primary production to secondary consumers. While krill is a dominant grazer of phytoplankton, it also consumes heterotrophic prey and the relative importance of these two resources may differ with ontogeny. We used stable isotope analyses to evaluate body size-dependent trophic and habitat shifts in krill during the austral summer around the South Shetland Islands, Antarctica. We found evidence for an asymmetric, ontogenetic niche expansion with adults of both sexes having higher and more variable δ15N values but consistent δ13C values in comparison with juveniles. This result suggests that while phytoplankton likely remains an important life-long resource, krill in our study area expand their dietary niche to include higher trophic food sources as body size increases. The broader dietary niches observed in adults may help buffer them from recent climate-driven shifts in phytoplankton communities that negatively affect larval or juvenile krill that rely predominately on autotrophic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the Second International Symposium on Information Theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Anderson ORJ, Phillips RA, McDonald RA, Shore RF, McGill RAR, Bearhop S (2009) Influence of trophic position and foraging range on mercury levels within a seabird community. Mar Ecol Prog Ser 375:277–288

    Article  CAS  Google Scholar 

  • Atkinson A, Snÿder R (1997) Krill–copepod interactions at South Georgia, Antarctica, I. Omnivory by Euphausia superba. Mar Ecol Prog Ser 160:67–76

    Article  Google Scholar 

  • Atkinson A, Meyer B, Stübing D, Hagen W, Schmidt K, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter. II. Juveniles and adults. Limnol Oceanogr 47:953–966

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103

    Article  CAS  Google Scholar 

  • Barkley E (1940) Nahrung und Filterapparat des Walkrebschens Euphausia superba Dana. Z Fisch 1:65–156

    Google Scholar 

  • Cherel Y (2008) Isotopic niches of emperor and Adélie penguins in Adélie Land Antarctica. Mar Biol 54(5):813–821

    Article  Google Scholar 

  • Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287

    Article  CAS  Google Scholar 

  • Cripps GC, Atkinson A (2000) Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57(S3):31–37

    Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • Dunton KH (2001) Delta N-15 and delta C-13 measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112

    Article  Google Scholar 

  • Everson I (2000) Role of krill in marine food webs: the Southern Ocean. In: Everson I (ed) Krill: biology, ecology and fisheries. Blackwell Science, Oxford, pp 194–201

    Google Scholar 

  • Fach BA, Meyer B, Wolf-Gladrow D, Bathmann U (2008) Biochemically based modeling study of Antarctic krill Euphausia superba growth and development. Mar Ecol Prog Ser 360:147–161

    Article  Google Scholar 

  • France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser 124:307–312

    Article  Google Scholar 

  • Frazer TK, Ross RM, Quetin LB, Montoya JP (1997) Turnover of carbon and nitrogen during growth of larval krill, Euphausia superba Dana: a stable isotope approach. J Exp Mar Biol Ecol 212:259–275

    Article  Google Scholar 

  • Freeman KH, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem Cy 6:185–198

    Article  CAS  Google Scholar 

  • Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295(5558):1275–1277

    Article  CAS  Google Scholar 

  • Gómez I, Wulff A, Roleda MY, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2009) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot Mar 52:593–608

    Google Scholar 

  • Gorokhova E, Hansson S (1999) An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Can J Fish Aquat Sci 56:2203–2210

    Article  Google Scholar 

  • Graham BS, Grubbs D, Holland K, Popp BN (2007) A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol 150(4):647–658

    Article  Google Scholar 

  • Granéli E, Granéli W, Rabbani MM, Daugbjerg N, Fransz G, Cuzin-Roudy J, Alder VA (1993) The influence of copepod and krill grazing on the species composition of phytoplankton communities from the Scotia-Weddell Sea. Polar Biol 13:201–213

    Article  Google Scholar 

  • Haberman KL, Ross RM, Quetin LB (2003) Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. J Exp Mar Biol Ecol 283:97–113

    Article  Google Scholar 

  • Hammerschlag-Peyer CM, Yeager LA, Araújo MS, Layman CA (2011) A hypothesis-testing framework for studies investigating ontogenetic niche shifts using stable isotope ratios. PLoS ONE 6(11):e27104

    Article  CAS  Google Scholar 

  • Hamner WM (1988) Biomechanics of filter feeding in the Antarctic krill Euphausia superba: review of past work and new observations. J Crustac Biol 8:149–163

    Article  Google Scholar 

  • Hamner WM, Hamner PP (2000) Behavior of Antarctic krill (Euphausia superba): schooling, foraging, and antipredatory behavior. Can J Fish Aquat Sci 57:192–202

    Article  Google Scholar 

  • Hernández-León S, Almeida C, Portillo-Hahnefeld A, Bé-cognée P, Moreno I (2001) Diel feeding behaviour of krill in the Gerlache Strait, Antarctica. Mar Ecol Prog Ser 223:235–242

    Article  Google Scholar 

  • Hewes CD, Reiss CS, Holm-Hansen O (2009) A quantitative analysis of sources for summertime phytoplankton variability over 18 years in the South Shetland Islands (Antarctica) region. Deep-Sea Res I 56:1230–1241

    Article  CAS  Google Scholar 

  • Hill JM, McQuaid CD (2011) Stable isotope methods: the effect of gut contents on isotopic ratios of zooplankton. Estuar Coast Shelf Sci 92(3):480–485

    Article  CAS  Google Scholar 

  • Hilton GM, Thompson DR, Sagar PM, Cuthbert RJ, Cherel Y, Bury SJ (2006) A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Global Change Biol 12:611–625

    Article  Google Scholar 

  • Hinga KR, Arthur MA, Pilson MEO, Whitaker D (1994) Carbon isotope fractionation by marine phytoplankton in culture: the effects of CO2 concentration, pH, temperature, and species. Global Biogeochem Cy 8:91–102

    Article  CAS  Google Scholar 

  • Hirons AC, Schell DM, Finney BP (2001) Temporal records of δ13C and δ15N in North Pacific pinnipeds: inferences regarding environmental change and diet. Oecologia 129:591–601

    Google Scholar 

  • Hodum PJ, Hobson KA (2000) Trophic relationships among Antarctic fulmarine petrels: insights into dietary overlap and chick provisioning strategies inferred from stable isotope (δ15N and δ13C) analyses. Mar Ecol Prog Ser 198:273–281

    Article  Google Scholar 

  • Holm-Hansen O, Riemann B (1978) Chlorophyll a determination: improvements in methodology. Oikos 30:438–447

    Article  CAS  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks, cold spring harbor symposium. Quant Biol 22:415–427

    Article  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia, or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Jaeger A, Cherel Y (2011) Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the Southern Indian Ocean. PLoS ONE 6(2):e16484

    Article  CAS  Google Scholar 

  • Ju SJ, Harvey HR (2004) Lipids as markers of nutritional condition and diet in the Antarctic krill Euphausia superba and Euphausia crystallorophias during austral winter. Deep-Sea Res II 51:2199–2214

    Article  CAS  Google Scholar 

  • Lara RJ, Alder V, Franzosi CA, Kattner G (2010) Characteristics of suspended particulate organic matter in the southwestern Atlantic: influence of temperature, nutrient and phytoplankton features on the stable isotope signature. J Marine Syst 79(1–2):199–209

    Article  Google Scholar 

  • Laws RM (1985) The ecology of the Southern Ocean. Am Sci 73:26–40

    Google Scholar 

  • Laws EA, Popp BN, Bidigare RR, Kennicutt MC, Macko SA (1995) Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental results. Geochim Cosmochim Acta 59:1131–1138

    Article  CAS  Google Scholar 

  • Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide quantitative measures of trophic diversity within food webs? Ecology 88:42–48

    Article  Google Scholar 

  • Maciejewska K (1993) Feeding of Antarctic krill Euphausia superba. Pol Polar Res 14:43–54

    Google Scholar 

  • Martínez del Rio C, Wolf BO (2005) Mass balance models for animal isotopic ecology. In: Starck MA, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, Enfield, pp 141–174

    Google Scholar 

  • Meyer B, Auerswald L, Siegel V, SpahiT S, Pape C, Fach B, Teschke M, Lopata A, Fuentes V (2010) Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar Ecol Prog Ser 398:1–18

    Article  CAS  Google Scholar 

  • Miller TE, Rudolf VH (2011) Thinking inside the box: community-level consequences of stage-structured populations. Trends Ecol Evol 26(9):457–466

    Article  Google Scholar 

  • Miller AK, Trivelpiece WZ (2007) Cycles of Euphausia superba recruitment evident in the diet of Pygoscelid penguins and net trawls in the South Shetland Islands, Antarctica. Polar Biol 30:1615–1623

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    Article  CAS  Google Scholar 

  • Moline MA, Claustere H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980

    Article  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  Google Scholar 

  • Newsome SD, Martínez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436

    Google Scholar 

  • Opaliński KW, Maciejewska K, Georgieva LV (1997) Notes on food selection in the Antarctic krill Euphausia superba. Polar Biol 17:350–357

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R, Froneman PW, Miller DGM (1997) Energetics and feeding of Euphausia superba in the South Georgia region during the summer of 1994. J Plankton Res 19:399–423

    Article  Google Scholar 

  • Park JI, Kang CK, Suh HL (2011) Ontogenetic diet shift in the euphausiid Euphausia pacifica quantified using stable isotope analysis. Mar Ecol Prog Ser 429:103–109

    Article  Google Scholar 

  • Perissinotto R, Gurney L, Pakhomov EA (2000) Contribution of heterotrophic material to diet and energy budget of Antarctic krill, Euphausia superba. Mar Biol 136:129–135

    Article  Google Scholar 

  • Polito MJ, Goebel ME (2010) Investigating the use of stable isotope analysis of milk to infer seasonal trends in the diets and foraging habitats of female Antarctic fur seals. J Exp Mar Biol Ecol 39:1–9

    Article  Google Scholar 

  • Polito MJ, Fisher S, Tobias CR, Emslie SD (2009) Tissue- specific isotopic discrimination factors in gentoo penguin (Pygoscelis papua) egg components: implications for dietary reconstructions using stable isotopes. J Exp Mar Biol Ecol 372:106–112

    Article  CAS  Google Scholar 

  • Polito MJ, Lynch HJ, Naveen R, Emslie SD (2011a) Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar Ecol Prog Ser 421:265–277

    Article  Google Scholar 

  • Polito MJ, Trivelpiece WZ, Karnovsky NJ, Ng E, Patterson WP, Emslie SD (2011b) Integrating stomach content and stable isotope analyses to quantify the diets of pygoscelid penguins. PLoS ONE 6:e26642

    Article  CAS  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Sullivan CW (1991) Particulate organic matter δ13C variations across the Drake Passage. J Geophys Res 96:15131–15135

    Article  CAS  Google Scholar 

  • Reich KJ, Bjorndal KA, Martínez del Rio C (2008) Effects of growth and tissue type on the kinetics of 13C and 15N incorporation in a rapidly growing ectotherm. Oecologia 155:651–663

    Article  Google Scholar 

  • Reid K, Murphy EJ, Loeb V, Hewitt RP (2002) Krill population dynamics in the Scotia Sea: variability in growth and mortality within a single population. J Mar Syst 36:1–10

    Article  Google Scholar 

  • Reiss CS, Cossio AM, Loeb V, Demer DA (2008) Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES J Mar Sci 65(4):497–508

    Article  Google Scholar 

  • Rudolf VHW, Lafferty KD (2011) Stage structure alters how complexity affects stability of ecological networks. Ecol Lett 14(1):75–79

    Article  CAS  Google Scholar 

  • Scharf FS, Juanes F, Rountree RA (2000) Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208:229–248

    Article  Google Scholar 

  • Schell DM (2000) Declining carrying capacity in the Bering Sea: isotopic evidence from whale baleen. Limnol Oceanogr 45:459–462

    Article  CAS  Google Scholar 

  • Schell DM, Barnett BA, Vinette KA (1998) Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Mar Ecol Prog Ser 162:11–23

    Article  CAS  Google Scholar 

  • Schmidt K, Atkinson A, Stübing D, McClelland JW, Montoya JP, Voss M (2003) Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnol Oceanogr 48(1):277–289

    Article  Google Scholar 

  • Schmidt K, McClelland JW, Mente E, Montoya JP, Atkinson A, Voss M (2004) Trophic-level interpretation based on δ15N values: implications of tissue-specific fractionation and amino acid composition. Mar Ecol Prog Ser 266:43–58

    Article  CAS  Google Scholar 

  • Schmidt K, Atkinson A, Petzke KJ, Voss M, Pond DW (2006) Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes. Limnol Oceanogr 51:2409–2427

    Article  CAS  Google Scholar 

  • Schmidt K, Atkinson A, Steigenberger S, Fielding S, Lindsay MCM, Pond DW, Tarling GA, Klevjer TA, Allen CS, Nicol S, Achterberg EP (2011) Seabed foraging by Antarctic krill: implications for stock assessment, bentho-pelagic coupling and the vertical transfer of iron. Limnol Oceanogr 56:1411–1428

    Article  CAS  Google Scholar 

  • Sears J, Hatch SA, O’Brien DM (2009) Disentangling effects of growth and nutritional stress on seabird stable isotope ratios. Oecologia 159:41–48

    Article  Google Scholar 

  • Seminoff JA, Bjorndal KA, Bolten AB (2007) Stable carbon and nitrogen isotope discrimination and turnover in pond sliders Trachemys scripta: insights for trophic study of freshwater turtles. Copeia 2007(3):534–542

  • Siegel V, Loeb V (1994) Length and age at maturity of Antarctic krill. Antarct Sci 6:479–482

    Article  Google Scholar 

  • Siegel V, Nicol S (2000) Population parameters. In: Everson I (ed) Krill biology, ecology and fisheries. Blackwell Science, London, pp 103–149

    Google Scholar 

  • Siegel V, Kawaguchi S, Ward P, Litvinov F, Sushin V, Loeb V, Watkins J (2004) Krill demography and large-scale distribution in the southwest Atlantic during January/February 2000. Deep Sea Res II 51:1253–1273

    Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Iannuzzi RA (2008) Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep-Sea Res II 55:2041–2058

    Article  Google Scholar 

  • Stowasser G, Atkinson A, McGill RAR, Phillips RA, Collins MA, Pond DW (2012) Food web dynamics in the Scotia Sea in summer: a stable isotope study. Deep-Sea Res II 59–60:208–221

    Article  Google Scholar 

  • Tierney M, Southwell C, Emmerson LM, Hindell MA (2008) Evaluating and using stable-isotope analysis to infer diet composition and foraging ecology of Adélie penguins Pygoscelis adeliae. Mar Ecol Prog Ser 355:297–307

    Article  Google Scholar 

  • Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci USA 108:7625–7628

    Article  CAS  Google Scholar 

  • Trueman CN, McGill RAR, Guyard PH (2005) The effect of growth rate on tissue-diet isotope spacing in rapidly growing animal. An experimental study with Atlantic salmon (Salmo salar). Rapid Commun Mass Sp 29:3239–3247

    Article  Google Scholar 

  • Turner TF, Collyer ML, Krabbenhoft TJ (2010) A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91:2227–2233

    Article  Google Scholar 

  • Van Cise AM (2009) AMLR 2008/2009 field season report: objectives, accomplishments and tentative conclusions. U.S. Department of Commerce, NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFSC-445, 83 p

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson CL, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15 N and 13C abundances in the Antarctic ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Res I 34:829–841

    Article  CAS  Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size structured populations. Annu Rev Ecol Syst 15:393–394

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by U.S. National Science Foundation (NSF) Office of Polar Programs (OPP) grant ANT-0739575 and the US AMLR program. We thank A. Cossio, K. Dietrich, R. Driscoll, M. Goebel, C. Hewes, V. Loeb, A. VanCise, J. Walsh and the AMLR physical and biological oceanography and zooplankton teams for assistance with the collection of oceanographic data and krill samples. J. Seminoff, K. Durenberger, D. Besic, and J. Blum assisted with lipid extractions, stable isotope, and statistical analyses. J. Hinke, M. Goebel and two anonymous reviewers provided helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Polito.

Additional information

Communicated by A. Atkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polito, M.J., Reiss, C.S., Trivelpiece, W.Z. et al. Stable isotopes identify an ontogenetic niche expansion in Antarctic krill (Euphausia superba) from the South Shetland Islands, Antarctica. Mar Biol 160, 1311–1323 (2013). https://doi.org/10.1007/s00227-013-2182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2182-z

Keywords

Navigation