Skip to main content

Advertisement

Log in

Appropriate pCO2 treatments in ocean acidification experiments

  • Review, Concept, and Synthesis
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Experiments in which organisms are reared in treatments simulating current and future pCO2 concentrations are critical for ocean acidification (OA) research. The majority of OA exposure experiments use average atmospheric pCO2 levels as a baseline treatment. We conducted an ecoregion-scale analysis of global carbon chemistry datasets. For many locales, atmospheric pCO2 levels are not an appropriate characterization of marine carbon chemistry. We argue that atmospheric pCO2 should be disregarded when setting baseline treatment conditions and experimental design should rely on measurements of carbon chemistry in a study subject’s habitat. As carbon chemistry conditions vary with space and time, we suggest using a range of pCO2 values as a control rather than a single value. We illustrate this issue with data on the habitat of Euphausia pacifica, which currently lives in waters with a pCO2 around 900 μatm, a concentration much higher than the current global atmospheric mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson AJ, Mackenzie FT (2011) Ocean acidification: setting the record straight. Biogeosci Discuss 8:6161–6190. doi:10.5194/bgd-8-6161-2011

    Article  Google Scholar 

  • Barry JP, Tyrrell T, Hansson L, Plattner G-K, Gattuso J-P (2010) Atmospheric CO2 targets for ocean acidification perturbation experiments. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, pp 53–66

    Google Scholar 

  • Brinton E, Ohman MD, Townsend AW, Knight MD, Bridgeman AL (1999) Euphausiids of the World Oceans. UNESCO Publishing and Expert Center for Taxonomic Identification

  • Collins S, Bell G (2004) Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566–569

    Article  CAS  Google Scholar 

  • Dupont S, Dorey N, Thorndyke M (2010) What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar Coast Shelf Sci 89:182–185

    Article  Google Scholar 

  • Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2012) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Marine Biol:1–9. doi:10.1007/s00227-012-1921-x

  • Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492. doi:10.1126/science.1155676

    Article  CAS  Google Scholar 

  • Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449. doi:10.1016/j.ecss.2010.05.004

    Article  CAS  Google Scholar 

  • Fitzer SC, Caldwell GS, Close AJ, Clare AS, Upstill-Goddard RC, Bentley MG (2012) Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J Exp Mar Biol Ecol 418–419:30–36

    Article  Google Scholar 

  • Green MA, Waldbusser GG, Reilly SL, Emerson K, O’Donnell S (2009) Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol Oceanogr 54:1048–1059

    Article  Google Scholar 

  • Hendriks IE, Duarte CM, Alvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar Coast Shelf Sci 86:157–164. doi:10.1016/j.ecss.2009.11.022

    Article  CAS  Google Scholar 

  • Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:e28983. doi:10.1371/journal.pone.0028983

    Article  CAS  Google Scholar 

  • Joint I, Doney SC, Karl DM (2011) Will ocean acidification affect marine microbes? ISME J 5:1–7. doi:10.1038/ismej.2010.79

    Article  Google Scholar 

  • Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister J, Feely RA, Millero F, Mordy C, Peng T-H (2004) A global ocean carbon climatology: results from GLODAP. Global Biogeochem Cycles 18(GB4031):1–23

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi:10.1111/j.1461-0248.2010.01518.x

    Article  Google Scholar 

  • Melzner F, Stange P, Trubenbach K, Thomsen J, Casties I, Panknin U, Gorb SN, Gutowska MA (2011) Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS One 6. doi:10.1371/journal.pone.0024223

  • Parker LM, Ross PM, O’Connor WA, Borysko L, Raftos DA, Pörtner H-O (2012) Adult exposure influences offspring response to ocean acidification in oysters. Glob Change Biol 18:82–92. doi:10.1111/j.1365-2486.2011.02520.x

    Article  Google Scholar 

  • Pörtner H (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217. doi:10.3354/meps07768

    Article  Google Scholar 

  • Price NN, Hamilton SL, Tootell JS, Smith JE (2011) Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Marine Ecol Prog Ser 440:67–78. doi:10.3354/meps09309

    Article  CAS  Google Scholar 

  • Sabine C, Key RM, Kozyr A, Feely RA, Wanninkhof R, Millero F, Peng T-H (2005) Global ocean data analysis project: results and data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee

  • Shamberger KEF, Feely RA, Sabine C, Atkinson MJ, DeCarlo E, Mackenzie FT, Drupp P, Butterfield DA (2011) Calcification and organic production on a Hawaiian coral reef. Mar Chem 127:64–75

    Article  CAS  Google Scholar 

  • Spalding MD, Fox HE, Halpern BS, McManus MA, Molnar J, Allen GR, Davidson N, Jorge ZA, Lombana AL, Lourie SA, Martin KD, McManus E, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583. doi:10.1641/b570707

    Article  Google Scholar 

  • Sunday JM, Crim RN, Harley CDG, Hart MW (2011) Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS One 6. doi:10.1371/journal.pone.0022881

  • Takahashi T, Sutherland SC, Kozyr A (2011) Global ocean surface water partial pressure of CO2 database: measurements performed during 1957–2010 (version 2010). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee

  • Thomsen J, Gutowska MA, Saphorster J, Heinemann A, Trubenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Kortzinger A, Wahl M, Melzner F (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:3879–3891. doi:10.5194/bg-7-3879-2010

    Article  CAS  Google Scholar 

  • Yu PC, Matson PG, Martz TR, Hofmann GE (2011) The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH. J Exp Mar Biol Ecol 400:288–295

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Chris Sabine and Simone Alin at NOAA PMEL for helpful discussions on ocean carbon data sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul McElhany.

Additional information

Communicated by S. Dupont.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 95 kb)

Supplementary material 2 (PDF 20616 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McElhany, P., Shallin Busch, D. Appropriate pCO2 treatments in ocean acidification experiments. Mar Biol 160, 1807–1812 (2013). https://doi.org/10.1007/s00227-012-2052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2052-0

Keywords

Navigation