Skip to main content

Advertisement

Log in

Energy budgets reveal equal benefits of varied migration strategies in northern gannets

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We investigated migration and wintering of adult northern gannets (Morus bassanus) breeding in east Scotland, North Sea, by deploying geolocation loggers over three winters. The wintering ranges of these birds varied from the North Sea to the Atlantic off West Africa. Flight time was taken as a proxy for migration and foraging effort. Gannets wintering off Africa had higher total flight times during migration than birds wintering further north. Total flight times in different wintering regions were generally low. Birds off West Africa consistently spent < 25 % of daylight hours in flight, but birds further north showed more variable values that may reflect more variable weather or food availability. Winter sea surface temperatures ranged from 9 °C (North Sea) to 16 °C (West Africa). Thermostatic costs in winter as estimated by measuring thermal conductance in carcasses in still air and water were 28 % higher in North Sea than off West Africa. This effect is aggravated by higher thermostatic costs caused by stronger wind chills in the North Sea compared to the conditions off West Africa. Birds wintering close to the UK arrived at the colony on average 12 days earlier than birds wintering off West Africa. We conclude that the net cost-benefit analysis may be similar for all wintering areas investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkinson PW, Baker AJ, Bennett KA, Clark NA, Clark JA, Cole KB, Dekinga A, Dey A, Gillings S, González PM, Kalasz K, Minton CDT, Newton J, Niles LJ, Piersma T, Robinson RA, Sitters HP (2007) Rates of mass gain and energy deposition in red knot on their final spring staging site is both time- and condition-dependent. J Appl Ecol 44:885–895

    Article  Google Scholar 

  • Bächler E, Hahn S, Schaub M, Arlettaz R, Jenni L, Fox JW, Afanasyev V, Liechti F (2010) Year-round tracking of small trans-Saharan migrants using light-level geolocators. PLoS ONE 5:e9566

    Article  Google Scholar 

  • Bairlein F (1991) Body mass of Garden Warblers (Sylvia borin) on migration: a review of field data. Vogelwarte 36:48–61

    Google Scholar 

  • Bates D, Maechler M, Dai B (2008) Linear mixed-effects models using S4 classes. Version 0.999375-25, http://lme4.r-forge.r-project.org/

  • Berthold P (1996) Control of bird migration. Springer, Berlin

    Google Scholar 

  • Berthold P, Schlenker R (1975) Das “Mettnau-Reit-Illmitz-Programm”—ein langfristiges Vogelfangprogramm der Vogelwarte Radolfzell mit vielfältiger Fragestellung. Vogelwarte 28:97–123

    Google Scholar 

  • Birt-Friesen VL, Montevecchi WA, Cairns DK, Macko SA (1989) Activity-specific metabolic rates of free-living northern gannets and other seabirds. Ecology 70:357–367

    Article  Google Scholar 

  • Bruderer B (2003) The radar window to bird migration. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Heidelberg, pp 347–358

    Google Scholar 

  • Bryant DM, Furness RW (1995) Basal metabolic rates of North Atlantic seabirds. Ibis 137:219–226

    Article  Google Scholar 

  • Calder WA, King JR (1974) Thermal and caloric relations of birds. In: Farner DS, King JR (eds) Avian Biology. Academic Press, New York, pp 259–413

    Google Scholar 

  • Camphuysen CJ, van Dijk J (1983) Zee- en kustvogels langs de Nederlandse kust, 1974–79. Limosa 56:81–230

    Google Scholar 

  • Cayan DR (1980) Large-scale relationships between sea surface temperature and surface air temperature. Monthly Weather Rev 108:1293–1301

    Article  Google Scholar 

  • Cunningham RO (1866) On the solan goose, or gannet (Sula bassana, Linn.). Ibis 8:1–23

    Article  Google Scholar 

  • Daunt F, Afanasyev V, Silk JRD, Wanless S (2006) Extrinsic and intrinsic determinants of winter foraging and breeding phenology in a temperate seabird. Behav Ecol Sociobiol 59:381–388

    Article  Google Scholar 

  • de Vries J, van Eerden MR (1995) Thermal conductance in aquatic birds in relation to the degree of water contact, body mass, and body fat: energetic implications of living in a strong cooling environment. Physiol Zool 68:1143–1163

    Google Scholar 

  • Enstipp MR, Daunt F, Wanless S, Humphreys EM, Hamer KC, Benvenuti S, Grémillet D (2006) Foraging energetics of North Sea birds confronted with fluctuating prey availability. In: Boyd IL, Wanless S, Camphuysen CJ (eds) Top predators in marine ecosystems. Cambridge University Press, Cambridge, pp 191–210

    Chapter  Google Scholar 

  • Enstipp MR, Grémillet D, Jones DR (2008) Heat increment of feeding in double-crested cormorants (Phalacrocorax auritus) and its potential for thermal substitution. J Exp Biol 211:49–57

    Article  Google Scholar 

  • Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman and Hall, London

    Google Scholar 

  • Fifield D (2011) Winter areas and migratory tactics of northern gannets (Morus bassanus) breeding in North America. MSc thesis, Memorial University of Newfoundland, St. John’s

  • Fort J, Porter WP, Grémillet D (2009) Thermodynamic modelling predicts energetic bottleneck for seabirds wintering in the northwest Atlantic. J Exp Biol 212:2483–2490

    Article  Google Scholar 

  • Fort J, Pettex E, Tremblay Y, Lorentsen S-H, Garthe S, Votier S, Pons JB, Siorat F, Furness RW, Grecian WJ, Bearhop S, Montevecchi WA, Grémillet D (2012) Meta-population evidence of oriented chain migration in northern gannets (Morus bassanus). Frontiers Ecol Environ. doi:http://dx.doi.org/10.1890/110194

  • Garthe S, Grémillet D, Furness RW (1999) At-sea-activity and foraging efficiency in chick-rearing Northern Gannets (Sula bassana): a case study in Shetland. Mar Ecol Prog Ser 185:93–99

    Article  Google Scholar 

  • Garthe S, Benvenuti S, Montevecchi WA (2003) Temporal patterns of foraging activities of northern gannets Morus bassanus in the north-west Atlantic. Can J Zool 81:453–461

    Article  Google Scholar 

  • Gatter W (2000) Vogelzug und Vogelbestände in Mitteleuropa. 30 Jahre Beobachtung des Tagzugs am Randecker Maar. Aula Verlag, Wiebelsheim

  • Gauthreaux SA Jr, Belser CG (2003) Radar ornithology and biological conservation. Auk 120:266–277

    Article  Google Scholar 

  • Green M, Alerstam T, Clausen P, Drent R, Ebbinge BS (2002) Dark-bellied Brent Geese Branta bernicla bernicla, as recorded by satellite telemetry, do not minimize flight distance during spring migration. Ibis 144:106–121

    Article  Google Scholar 

  • Green JA, Boyd IL, Woakes AJ, Warren NL, Butler PJ (2005) Behavioural flexibility during year-round foraging in macaroni penguins. Mar Ecol Prog Ser 296:183–196

    Article  Google Scholar 

  • Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075

    Article  CAS  Google Scholar 

  • Griswold CK, Taylor CM, Norris DR (2010) The evolution of migration in a seasonal environment. Proc R Soc B 277:2711–2720

    Article  Google Scholar 

  • Hamer KC, Phillips RA, Wanless S, Harris MP, Wood AG (2000) Foraging ranges, diets and feeding locations of gannets Morus bassanus in the North Sea: evidence from satellite telemetry. Mar Ecol Prog Ser 200:257–264

    Article  Google Scholar 

  • Humphreys EM, Wanless S, Bryant DM (2007) Elevated metabolic costs while resting on water in a surface feeder: the Black-legged Kittiwake Rissa tridactyla. Ibis 149:106–111

    Article  Google Scholar 

  • Humphries MM, Careau V (2011) Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr Comp Biol 51:419–431

    Article  Google Scholar 

  • Hüppop O, Hüppop K (2011) Bird migration on Helgoland: the yield from 100 years of research. J Ornithol 152(Suppl 1):S25–S40

    Article  Google Scholar 

  • Hüppop K, Dierschke J, Dierschke V, Hill R, Jachmann KF, Hüppop O (2010) Phänologie des, sichtbaren’’ Vogelzugs über der Deutschen Bucht. Vogelwarte 48:181–267

    Google Scholar 

  • Kubetzki U, Garthe S, Fifield D, Mendel B, Furness RW (2009) Individual migratory schedules and wintering areas of northern gannets. Mar Ecol Prog Ser 391:257–265

    Article  Google Scholar 

  • Lack D, Varley GC (1945) Detection of birds by radar. Nature 156:446

    Article  Google Scholar 

  • Lewis S, Benvenuti S, Daunt F, Wanless S, Dall’Antonia L, Luschi P, Elston DA, Hamer KC, Sherratt TN (2004) Partitioning of diving effort in foraging trips of northern gannets. Can J Zool 82:1910–1916

    Article  Google Scholar 

  • LWVT/SOVON (Landelijke Werkgroep Vogeltrektellen/Samenwerkende Organisaties Vogelonderzoek Nederland) (2002) Vogeltrek over Nederland 1976–1993. Schuyt & Co., Haarlem

  • Meltofte H, Faldborg J (1987) Forekomsten af måger og terner på Blåvandshuk 1963–1977. Dansk Ornithol For Tidsskr 81:137–166

    Google Scholar 

  • Morrison PR, Tietz WJ (1957) Cooling and thermal conductivity in three small Alaskan mammals. J Mammal 39:78–87

    Article  Google Scholar 

  • Nelson JB (2002) The Atlantic gannet. Fenix Books, Norfolk

    Google Scholar 

  • Newton I (2008) The migration ecology of birds. Elsevier, Amsterdam

    Google Scholar 

  • Pennycuick CJ, Bradbury TAM, Einarsson Ó, Owen M (1999) Response to weather and light conditions of migrating Whooper Swans Cygnus cygnus and flying height profiles, observed with the Argos satellite system. Ibis 141:434–443

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org

  • Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM, Moller H, Tylor GA, Foley DG, Block BA, Costa DP (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proc Nat Acad Sci USA 103:12799–12802

    Article  CAS  Google Scholar 

  • Stutchbury BJM, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V (2009) Tracking long-distance songbird migration by using geolocators. Science 323:896

    Article  CAS  Google Scholar 

  • Ueta M, Sato F, Nakagawa H, Mita N (2000) Migration routes and differences of migration schedule between adult and young Steller’s Sea Eagles Haliaeetus pelagicus. Ibis 142:35–39

    Article  Google Scholar 

  • Walsberg GE (1988) Heat flow through avian plumages: the relative importance of conduction, convection, and radiation. J Therm Biol 13:89–92

    Article  Google Scholar 

  • Wernham CV, Toms M, Marchant J, Clark J, Siriwardena G, Baillie S (eds) (2002) The migration atlas: movements of the birds of Britain and Ireland. Poyser, London

    Google Scholar 

  • Wilson RP, Ducamp JJ, Rees WG, Culik BM, Nickamp K (1992) Estimation of location: global coverage using light intensity. In: Priede IG, Swift SM (eds) Wildlife telemetry: remote monitoring and tracking of animals. Ellis Horwood, New York, pp 131–134

    Google Scholar 

  • Wilson RP, Weimerskirch H, Lys P (1995) A device for measuring seabird activity at sea. J Avian Biol 26:172–175

    Article  Google Scholar 

Download references

Acknowledgments

This study was part of the EU-funded project ‘DISCBIRD’ (‘Effects of changes in fishery discarding rates on seabird communities’, contract Q5RS-2001-00839). The experiments comply with the current laws of the UK. J. Crane, O. Engelhard and S.C. Votier helped with field work. Molecular sexing was carried out by K. Griffiths. Sir Hew Hamilton-Dalrymple allowed us to work on the Bass Rock, and the Marr family provided safe transport to and from the island. S. Adler guided us on the use of GLMMs. G. Peters (earth & ocean technologies, Kiel, Germany) provided technical advice. M. Molis (Alfred Wegener Institute for Polar and Marine Research, Helgoland, Germany) kindly provided the data loggers for the thermal conductivity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Garthe.

Additional information

Communicated by J. D. R. Houghton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garthe, S., Ludynia, K., Hüppop, O. et al. Energy budgets reveal equal benefits of varied migration strategies in northern gannets. Mar Biol 159, 1907–1915 (2012). https://doi.org/10.1007/s00227-012-1978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1978-6

Keywords

Navigation