Skip to main content

Advertisement

Log in

Variation in treatability of Scots pine sapwood: a survey of 25 different northern European locations

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The treatability of Scots pine sapwood sampled from 25 locations in northern Europe, which was impregnated with an experimental furfuryl alcohol mix, was studied. A large variation in treatability was found between stands. The treatability was affected by anatomical properties of the trees and therefore also by the immediate climate, the sociological position of the tree in the stand, growth increments and on-stand competition. With the models applied, most parts of the differences in treatability between stands could be explained, while the treatability variation between trees within a stand remained mostly unexplained. Wider annual rings and higher latewood contents were found to increase the treatability. Models that included data on growth conditions and climate explain more of the variation in treatability, indicating that also other anatomical properties are influencing the treatability. Tree attributes and growth conditions that reduce annual ring width and latewood content decreased the treatability. Trees growing under warmer conditions and developing larger growth increments were easier to impregnate. Wood from trees growing near the timberline and under environmental conditions impairing wood growth was more difficult to treat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed SA, Sehlstedt-Persson M, Karlsson O, Moren T (2012) Uneven distribution of preservative in kiln-dried sapwood lumber of Scots pine: impact of wood structure and resin allocation. Holzforschung 66(2):251–258

    Article  CAS  Google Scholar 

  • Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees Struct Funct 7(4):214–219

    Article  Google Scholar 

  • Balatinecz JJ, Kennedy RV (1967) Maturation of ray parenchyma cells in Pine. For Prod J 17(10):57–64

    Google Scholar 

  • Bamber RK (1973) The formation and permeability of interstitial spaces in the sapwood of some pinus species. J Inst Wood Sci 6(2):36–38

    Google Scholar 

  • Bauch J, Liese W, Willeitner H (1983) Zum Tränkverhalten verschiedener Kiefernarten. Holz Roh- Werkst 41(8):339–344

    Article  CAS  Google Scholar 

  • Bellmann H (1955) Über den Einfluss der Tüpfelkapillaren und Micellarinterstizien auf die Mechanik von Impregniervorgängen mit Lösungen. Mitteilungen der Bundesanstalt für Forst- und Holzwirtschaft. Mitteilungen der Bundesanstalt für Forst- und Holzwirtschaft

  • Blew JO (1961) Results of preservative treatment of Douglas-fir from different areas. Paper presented at the American Wood-Preservers’ Association. Proceedings of the 57th annual meeting

  • Buro A, Buro E-A (1959a) Beitrag zur Kenntnis der Eindringwege für Flüssigkeiten in Kiefernholz. Holzforschung 13(3):71–77

    Article  CAS  Google Scholar 

  • Buro A, Buro E-A (1959b) Untersuchungen über die Durchlässigkeit von Kiefernholz. Holz Roh- Werkst 17(12):461–474

    Article  Google Scholar 

  • Chong S-H, Ahmed SA, Chun S-K (2007) Safranine penetration path observed by optical microscope in four Korean pine wood species. KFS J 18(2):138–142

    Google Scholar 

  • Côté WA (1963) Structural factors affecting the permeability of wood. J Poly Sci Part C Poly Symp 2(1):231–242

    Article  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiol 29(8):1011–1020

    Article  PubMed  Google Scholar 

  • EN 350-2 (1994) Durability of wood and wood-based products. Natural durability of solid wood. Guide to natural durability and treatability of selected wood species of importance in Europe. European Norm

  • Foster SC, Hale MD, Williams GR (1997) Efficacy of anhydrides as wood protection chemicals. Paper presented at the International Research Group on Wood Preservation, Whistler 25–30 May 1997

  • Giuggiola A, Kuster TM, Saha S (2010) Drought induced mortality of Scots pines at the southern limits of its distribution in Europe: causes and consequences. iForest 3:95–97

    Article  Google Scholar 

  • Gort-Oromi J, Mehtätalo L, Peltola H, Zubizarreta-Gerendiain A, Pertti P, Venäläinen A (2011) Effects of spacing and genetic entry on radial growth and ring density development in Scots pine (Pinus sylvestris L.). Ann For Sci 68:1233–1243

    Article  Google Scholar 

  • Grosser D (1977) Die Hölzer Mitteleuropas - Ein mikrophotographischer Lehratlas. Springer, Berlin

    Book  Google Scholar 

  • Hildebrandt G (1960) The effect of growth conditions on the structure and properties of wood. Paper presented at the 5th World Forestry Congress, Seattle, Washington, USA, 29 August–10 September 1960

  • Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley Series in Renewable Resources. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Homan WJ, Jorissen AJM (2004) Wood modification developments. HERON 49(4):361–386

    Google Scholar 

  • Kilpeläinen A, Peltola H, Ryyppö A, Kellomäki S (2005) Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties. Tree Physiol 25(1):75–83

    Article  PubMed  Google Scholar 

  • Kilpeläinen A, Gerendiain AZ, Luostarinen K, Peltola H, Kellomäki S (2007) Elevated temperature and CO2 concentration effects on xylem anatomy of Scots pine. Tree Physiol 27(9):1329–1338

    Article  PubMed  Google Scholar 

  • Koljo B (1953) Die Abhängigkeit der Tränkmittelaufnahme des Holzes von verschiedenen Faktoren unter besonderer Berücksichtigung von Kiefer und Fichte. Holz Roh- Werkst 11(8):303–311

    Article  Google Scholar 

  • Lande S, Høibø O, Larnøy E (2010) Variation in treatability of Scots pine (Pinus sylvestris) by the chemical modification agent furfuryl alcohol dissolved in water. Wood Sci Technol 44(1):105–118

    Article  CAS  Google Scholar 

  • Larnøy E, Militz H, Eikenes M (2005) Uptake of chitosan based impregnation solutions with varying viscosities in four different European wood species. Holz Roh- Werkst 63(6):456–462

    Article  Google Scholar 

  • Larnøy E, Lande S, Vestøl GI (2008) Variations of Furfuryl alcohol and Wolmanit CX-8 treatability of pine sapwood within and between trees. Paper presented at the International Research Group on Wood Protection, Istanbul, Turkey, 25–29 May 2008

  • Liese W, Bauch J (1967) On anatomical causes of the refractory behaviour of spruce and Douglas fir. Inst Wood Sci 4(1):3–14

    Google Scholar 

  • Linares JC, Covelo F, Carreira JA, Merino JÁ (2012) Phenological and water-use patterns underlying maximum growing season length at the highest elevations: implications under climate change. Tree Physiol 32(2):161–170

    Article  PubMed  Google Scholar 

  • Martin JA, Esteban LG, de Palacios P, Fernandez FG (2010) Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance. Trees Struct Funct 24(6):1017–1028

    Article  Google Scholar 

  • Martínez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R, Ripullone F, Sass-Klaassen U, Zweifel R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 184(2):353–364

    Article  PubMed  Google Scholar 

  • Mátyás C, Ackzell L, Samuel CJA (2004) EUFORGEN technical guidelines for genetic conservation and use for Scots pine (Pinus sylvestris). Int Plant Genet Resour Inst, Rome

    Google Scholar 

  • Moir AK, Leroy SAG, Helama S (2011) Role of substrate on the dendroclimatic response of Scots pine from varying elevations in northern Scotland. Can J For Res 41(4):822–838

    Article  Google Scholar 

  • NWPC (2011) Nordic requirements for quality control of preservative-treated wood. Part 1: Pine and other permeable softwoods. NWPC Document No 3:2011

  • NWPC (2013) Wood preservatives approved by the Nordic Wood Preservation Council. list no 88

  • Olsson T, Megnis M, Varna J, Lindberg H (2001a) Measurement of the uptake of linseed oil in pine by the use of an X-ray microdensitometry technique. J Wood Sci 47(4):275–281

    Article  Google Scholar 

  • Olsson T, Megnis M, Varna J, Lindberg H (2001b) Study of the transverse liquid flow paths in pine and spruce using scanning electron microscopy. J Wood Sci 47(4):282–288

    Article  Google Scholar 

  • Phillips EWJ (1933) Movement of the pit membrane in coniferous woods, with special reference to preservative treatment. Forestry 7(2):109–120

    CAS  Google Scholar 

  • Pilgård A, Alfredsen G, Hietala A (2010) Quantification of fungal colonization in modified wood: quantitative real-time PCR as a tool for studies on Trametes versicolor. Holzforschung 64:645–651

    Article  Google Scholar 

  • Rhatigan R, Freitag C, El-Kasmi S, Morrell JJ (2004) Preservative treatment of Scots pine and Norway spruce. For Prod J 54(10):91–94

    CAS  Google Scholar 

  • Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163(1):105–121

    Article  Google Scholar 

  • Schove DJ (1954) Summer temperatures and tree-rings in North-Scandinavia A. D. 1461-1950. Geogr Ann 36(1/2):40–80

    Google Scholar 

  • Schweingruber FH, Bräker OU, Schär E (1979) Dendroclimatic studies on conifers from central Europe and Great Britain. Boreas 8(4):427–452

    Article  Google Scholar 

  • Siau JF (1984) Transport processes in wood. Springer, New York

    Book  Google Scholar 

  • Skaar C (1972) Water in wood. Syracuse, New York

    Google Scholar 

  • Stamm AJ (1946) Passage of liquids, vapors and dissolved materials through softwoods. U. S. Forest Products Laboratory, Technical bulletin 929

    Google Scholar 

  • Tondi G, Thevenon MF, Mies B, Standfest G, Petutschnigg A, Wieland S (2013) Impregnation of Scots pine and beech with tannin solutions: effect of viscosity and wood anatomy in wood infiltration. Wood Sci Technol 47(3):1–12

    Article  Google Scholar 

  • Venås TM, Rinnan Å (2008) Determination of weight percent gain in solid wood modified with in situ cured furfuryl alcohol by near-infrared reflectance spectroscopy. Chemom Intell Lab Syst 92(2):125–130

    Article  Google Scholar 

  • Wang Y, Titus SJ, LeMay VM (1998) Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixedwood forests. Can J For Res 28(8):1171–1183

    Article  Google Scholar 

  • Waring RH (1986) Characteristics of trees predisposed to die. In: Schneider T (ed) Studies in environmental science, vol 30. Elsevier, Amsterdam, pp 117–123

    Google Scholar 

  • Wilhelmsson L, Arlinger J, Spångberg K, Lundqvist S-O, Grahn T, Hedenberg Ö, Olsson L (2002) Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scand J For Res 17(4):330–350

    Article  Google Scholar 

  • Yaman B (2007) Comparative wood anatomy of Pinus sylvestris and its var. compacta in the west Black Sea region of Turkey. IAWA J 28(1):75–81

    Article  Google Scholar 

  • Zimmer K, Larnøy E, Koch G (2009) Wood properties influencing the penetration of Scots pine (Pinus sylvestris) sapwood with the wood modification agent furfuryl alcohol. Paper presented at the International Research Group on Wood Protection, Beijing, China, 24–28 May 2009

  • Zimmer K, Treu A, McCulloh KA (2014) Anatomical differences in the structural elements of fluid passage of Scots pine sapwood with contrasting treatability. Wood Sci Technol 48(2):435–447

    Article  CAS  Google Scholar 

  • Zobel BJ, van Buijtenen JP (1989) Wood variation: its causes and control. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Georg Behr for his effort during harvest and sample preparation, as well as the Northern Periphery Program project “Developing the Scots Pine Resource” for financial support and Kebony AS, Skien, Norway, for providing the experimental impregnation solution. The help of each person that was involved in the sampling process is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin P. Zimmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmer, K.P., Høibø, O.A., Vestøl, G.I. et al. Variation in treatability of Scots pine sapwood: a survey of 25 different northern European locations. Wood Sci Technol 48, 1049–1068 (2014). https://doi.org/10.1007/s00226-014-0660-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-014-0660-1

Keywords

Navigation