Skip to main content

Advertisement

Log in

Recovery of bioactive compounds from Pinus pinaster wood by consecutive extraction stages

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Pinus pinaster wood samples, obtained at different positions of three healthy trees, were subjected to two sequential extractions using an Accelerated Solvent Extraction instrument. The first extraction was carried out with hexane (to remove lipophilic extractives) and the second one with acetone/water (95:5 v/v) to recover bioactive phenolic compounds, the target compounds of this study. The extracted fractions were assayed for total yield and composition. The extracts contained a spectrum of phenolic compounds (simple phenolics, phenolic stilbenes, flavonoids and lignans) and non-phenolic components (juvabiones, resin and fatty acids, steryl esters and triglycerides). The fractionation effects achieved by consecutive extractions and the recovery of bioactive phenolics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alakangas E, Mäkinen T (2008) BioRefine programme 2007–2012. Yearbook 2008. VTT Technical Research Centre of Finland. http://www.tekes.fi/fi/document/45526/biorefine_yearbook2008_pdf. Accessed 15 April 2013

  • Alvarez-Novoa JC, Erdtman H, Lindstedt G (1950) Constituents of pine heartwood. XIX. The heartwood of Pinus pinea L., Pinus pinaster Aiton, Pinus halepensis Mill., and Pinus nigra Arnold var. calabrica (Loudon) Schneider. Acta Chem Scand 4(3):444–447

    Article  CAS  Google Scholar 

  • Anderson AB (1956) Increasing extractive content in trees for rosin production. Extract stimulation of Jeffrey pine. Tappi 39:55–59

    CAS  Google Scholar 

  • Ango PY, Kapche DWFG, Kuete V, Ngadjui BT, Bezabih M, Abegaz BM (2012) Chemical constituents of Trilepisium madagascariense (Moraceae) and their antimicrobial activity. Phytochem Lett 5(3):524–528

    Article  CAS  Google Scholar 

  • Back EL (2000) The locations and morphology of resin components in the wood. In: Back EL, Allen LH (eds) Pitch control, wood resin and deresination. Tappi Press, Atlanta, pp 19–26

    Google Scholar 

  • Bauerova K, Ponist S, Mihalova D, Drafi F, Kuncirova V (2011) Utilization of adjuvant arthritis model for evaluation of new approaches in rheumatoid arthritis therapy focused on regulation of immune processes and oxidative stress. Interdiscip Toxicol 4(1):33–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berthier S, Kokutse A, Stokes A, Fourcad T (2001) Irregular heartwood formation in maritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Ann Bot 87(1):19–25

    Article  Google Scholar 

  • Bohlmann J, Crock J, Jetter R, Croteau R (1998) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA 95(12):6756–6761

    Article  CAS  PubMed  Google Scholar 

  • Boutelje JB (1966) On the anatomical structure, moisture content, density, shrinkage, and resin content of the wood in and around knots in Swedish pine (Pinus silvestris L.) and in Swedish spruce (Picea abies Karst.). Svensk Papperstidn 69(1):1–10

    Google Scholar 

  • Brown DJ (2012) Dietary lignan intake and breast cancer risk. Integr Med Alert 15(8):9

    Google Scholar 

  • Celimene CC, Micales JA, Ferge L, Young RA (1999) Efficacy of pinosylvins against white-rot and brown-rot fungi. Holzforschung 53(5):491–497

    Article  CAS  Google Scholar 

  • Céspedes CL, Avila JG, García AM, Becerra J, Flores C, Aqueveque P, Bittner M, Hoeneisen M, Martinez M, Silva M (2006) Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z Naturforsch C 61(1–2):35–43

    PubMed  Google Scholar 

  • Chambost V, McNut J, Stuart PR (2008) Guided tour: implementing the forest biorefinery (FBR) at existing pulp and paper mills. Pulp Pap Can 109:19–27

    CAS  Google Scholar 

  • Conde E, Fang W, Hemming J, Willför S, Moure A, Domínguez H, Parajó JC (2013) Water-soluble components of Pinus pinaster wood. BioRes 8(2):2047–2063

    Google Scholar 

  • Ekeberg D, Flaete PO, Eikenes M, Fongen M, Naess-Andresen CF (2006) Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J Chromatogr A 1109(2):267–272

    Article  CAS  PubMed  Google Scholar 

  • Ekman R, Holmbom B (1989) Analysis by gas chromatography of the wood extractives in pulp and water samples from mechanical pulping of spruce. Nord Pulp Pap Res J 4(1):16–24

    Article  CAS  Google Scholar 

  • Fang JM, Chang CF, Cheng YS (1987) Flavonoids from Pinus morrisonicola. Phytochemistry 26(9):2559–2561

    Article  CAS  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628

    Article  CAS  PubMed  Google Scholar 

  • Geraldo de Carvalho M, Cranchi DC, Geraldo de Carvalho A (1996) Chemical constituents from Pinus strobus var. chiapensis. J Braz Chem Soc 7(3):187–191

    Article  CAS  Google Scholar 

  • Gözü BB, Komulainen H, Hyvönen P, von Wright A (2010) The impact of pinosylvin on the development of Listeria monocytogenes in the salted rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) stored at different temperatures. J Fish Sci com 4(4):419–426

    Google Scholar 

  • Gref R, Hakansson C, Henningsson B, Hemming J (2000) Influence of wood extractives on brown and white rot decay in scots pine heart-, light- and sapwood. Mater Org 33(2):119–128

    Google Scholar 

  • Gullón P, Romaní A, Vila C, Garrote G, Parajó JC (2012) Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuel Bioprod Bioref 6(2):219–232

    Article  Google Scholar 

  • Hata K (1955) Chemical properties of Pinus pinaster wood from the Ehime District Trans. J Jpn For Soc 36:335–337

    Google Scholar 

  • Hemingway RW, Hills WE, Lau LS (1973) Extractives in Pinus pinaster wood. Svensk Papperstidning 76(10):371–376

    CAS  Google Scholar 

  • Hillis WE, Inoue T (1968) The formation of polyphenols in trees—IV. The polyphenols formed in Pinus radiata after Sirex attack. Phytochemistry 7(1):13–22

    Article  CAS  Google Scholar 

  • Holmbom B, Eckerman C, Eklund P, Hemming J, Nisula L, Reunanen M, Sjöholm R, Sundberg A, Sundberg K, Willför S (2003) Knots in trees—a new rich source of lignans. Phytochem Rev 2:331–340

    Article  CAS  Google Scholar 

  • Hovelstad H, Leirset I, Oyaas K, Fiksdahl A (2006) Screening analyses of pinosylvin stilbenes, resin acids and lignans in Norwegian conifers. Molecules 11(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • Hwang B, Lee J, Liu QH, Woo ER, Lee DG (2010) Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii. Molecules 15(5):3507–3516

    Article  CAS  PubMed  Google Scholar 

  • Jančinová V, Perečko T, Nosáľ R, Harmatha J, Smidrkal J, Drábiková K (2012) The natural stilbenoid pinosylvin and activated neutrophils: effects on oxidative burst, protein kinase C, apoptosis and efficiency in adjuvant arthritis. Acta Pharmacol Sin 33(10):1285–1292

    Article  PubMed  Google Scholar 

  • Kato A, Hashimoto Y, Kidokoro M (1979) (+)Nortrachelogenin, a new pharmacologically active lignan from Wikstroemia indica. Lloydia 42(2):159–162

    CAS  PubMed  Google Scholar 

  • Kebenei JS, Ndalut PK, Sabah AO (2011) Anti-plasmodial activity of Nortrachelogenin from the root bark of Carissa edulis (vahl). Int J Appl Res Nat Prod 4(3):1–5

    CAS  Google Scholar 

  • Kokubo R, Sakai K, Imamura H (1990) Secondary metabolites in cell cultures of woody plants. II. Formation of pinosylvin and its monomethyl ether in callus and the effect of UV irradiation on their contents. J Jpn Wood Res Soc 36(12):1084–1088

    CAS  Google Scholar 

  • Lee SK, Lee HJ, Min HY, Parka EJ, Lee KM, Ahn YH, Cho YJ, Pyee JH (2005) Antibacterial and antifungal activity of pinosylvin, a constituent of pine. Fitoterapia 76(2):258–260

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Cha KH, Selenge D, Solongo A, Nho CW (2007) The chemopreventive effect of taxifolin is exerted through ARE-dependent gene regulation. Biol Pharm Bull 30(6):1074–1079

    Article  CAS  PubMed  Google Scholar 

  • Lindberg LE, Willför SM, Holmbom BR (2004) Antibacterial effects of knotwood extractives on paper mill bacteria. J Ind Microbiol Biotechnol 31(3):137–147

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Wu CX, Zhou D, Yan F, Tian S, Zhang L, Zhang TT, Du GH (2012) Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Med 10(105):1–21

    Article  Google Scholar 

  • Loman AA (1970) Effect of heartwood fungi of Pinus contorta var. latifolia on pinosylvin, pinosylvinmonomethyl ether, pinobanksin, and pinocembrin. Can J Bot 48(4):737–747

    Article  CAS  Google Scholar 

  • Luo H, Jiang BH, King SM, Chen YC (2008) Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr Cancer 60(6):800–809

    Article  CAS  PubMed  Google Scholar 

  • Mahesh VB, Seshadri TR (1954) Chemical components of commercial woods and related plant materials. II. The heartwood of Pinus griffithii. J Sci Ind Res 13B:835–841

    CAS  Google Scholar 

  • Maimoona A, Naeem I, Saddiqe Z, Jameel K (2011) A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract. J Ethnopharmacol 133(2):261–277

    Article  PubMed  Google Scholar 

  • Maridass M, Raju G, Thangavel K, Ghanthikumar S (2008) Prediction of anti-HIV activity of flavanoid constituents through PASS. Ethnobotanical Leafl 12:954–994

    Google Scholar 

  • Nascimento EA, Morais SAL, Vallejo MCG, Fernandez-Vega FI, Varela PN (1995) The composition of wood extracts form Spanish Pinus pinaster and Brazilian Pinus caribaea. J Braz Chem Soc 6(4):331–336

    Article  CAS  Google Scholar 

  • Neacsu M, Eklund PC, Sjoeholm RE, Pietarinen SP, Ahotupa MO, Holmbom BR, Willför SM (2007) Antioxidant flavonoids from knotwood of Jack pine and European aspen. Holz Roh- Werkst 65(1):1–6

    Article  CAS  Google Scholar 

  • Ondrias K, Stasko A, Hromadova M, Suchy V, Nagy M (1997) Pinobanksin inhibits peroxidation of low density lipoprotein and it has electron donor properties reducing α-tocopherol radicals. Pharmazie 52(7):566–567

    CAS  PubMed  Google Scholar 

  • Örså F, Holmbom B (1994) A convenient method for the determination of wood extractives in papermaking process waters and effluents. J Pulp Pap Sci 20(12):J361–J366

    Google Scholar 

  • Phillips MA, Bohlmann J, Gershenzon J (2006) Molecular regulation of induced terpenoid biosynthesis in conifers. Phytochem Rev 5(1):179–189

    Article  CAS  Google Scholar 

  • Pietarinen SP, Willfor SM, Vikstrom FA, Holmbom BR (2006) Aspen knots, a rich source of flavonoids. J Wood Chem Technol 26(3):245–258

    Article  CAS  Google Scholar 

  • Plumed-Ferrer C, Väkeväinen K, Komulainen H, Rautiainen M, Smeds A, Raitanen JE, Eklund P, Willför S, Alakomi HL, Saarela M, von Wright A (2013) The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. Int J Food Microbiol In press

  • Rogovskiĭ VS, Matiushin AI, Shimanovskiĭ NL, Semeĭkin AV, Kukhareva TS, Koroteev AM, Koroteev MP, Nifant’ev EE (2010) Antiproliferative and antioxidant activity of new dihydroquercetin derivatives. Eksp Klin Farmakol 73(9):39–42

    PubMed  Google Scholar 

  • Schroeder FC, del Campo ML, Grant JB, Weibel DB, Smedley SR, Bolton KL, Meinwald J, Eisner T (2006) Pinoresinol: a lignol of plant origin serving for defense in a caterpillar. Proc Natl Acad Sci USA 103(42):15497–15501

    Article  CAS  PubMed  Google Scholar 

  • Shain L, Miller JB (1982) Pinocembrin: an antifungal compound secreted by leaf glands of eastern cottonwood. Phytopathology 72(7):877–880

    Article  CAS  Google Scholar 

  • Simard F, Legault J, Lavoie S, Mshvildadze V, Pichette A (2008) Isolation and identification of cytotoxic compounds from the wood of Pinus resinosa. Phytother Res 22(7):919–922

    Article  CAS  PubMed  Google Scholar 

  • Sinclair GD, Dymond DK (1973) Distribution and composition of extractives in jack pine trees. Can J For Res 3(4):516–521

    Article  CAS  Google Scholar 

  • Soromou LW, Chu X, Jiang L, Wei M, Huo M, Chen N, Guan S, Yang X, Chen C, Feng H (2012) In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int Immunopharmacol 14(1):66–74

    Article  CAS  PubMed  Google Scholar 

  • Sturm J, Vessière F (2005) Rapport annuel 2005. Centre Technique du papier. http://www.webctp.com/docs/documents/ACC208B4-188B-310B-B8407248A676D1E6.Ann.pdf. Accessed 15 April 2013

  • Towers M, Browne T, Kerekes R, Paris J, Tran H (2007) Biorefinery opportunities for the Canadian pulp and paper industry. Pulp Pap Can 108(6):26–29

    CAS  Google Scholar 

  • Välimaa AL, Honkalampi-Hämäläinen U, Pietarinen S, Willför S, Holmbom B, von Wright A (2007) Antimicrobial and cytotoxic knotwood extracts and related pure compounds and their effects on food-associated microorganisms. Int J Food Microbiol 115(2):235–243

    Article  PubMed  Google Scholar 

  • Van Ree R, Annevelink B (2007) Status report biorefinery 2007. Wageningen. http://www.biorefinery.nl/fileadmin/biorefinery/docs/publications/StatusDocumentBiorefinery2007final211107.pdf. Accessed 15 April 2013

  • Venäläinen M, Harju AM, Saranpää P, Kainulainen P, Tiitta M, Velling P (2004) The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood. Wood Sci Technol 38(2):109–118

    Article  Google Scholar 

  • Villanueva VR, Barbier M, Gonnet M, Lavie P (1970) Les flavonoids de la propolis isolement d’une nouvelle substance bacteriostatique: la pinocembrine. Ann Inst Pasteur 118(1):84–87

    CAS  Google Scholar 

  • von Wright A (2012) PINOBIO: Pinosylvins as novel bioactive agents for food applications. http://www.woodwisdom.net/mm_files/do_897/PINOBIO.pdf. Accessed 15 April 2013

  • Willför SM, Holmbom B (2004) Isolation and characterization of water-soluble polysaccharides from Norway spruce and Scots pine. Wood Sci Technol 38(3):173–177

    Article  Google Scholar 

  • Willför SM, Hemming J, Reunanen M, Holmbom B (2003a) Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung 57(4):359–372

    Article  Google Scholar 

  • Willför SM, Hemming J, Reunanen M, Eckerman C, Holmbom B (2003b) Lignans and lipophilic extractives in Norway spruce knots and stemwood. Holzforschung 57(1):27–36

    Article  Google Scholar 

  • Willför SM, Ahotupa MO, Hemming JE, Reunanen MHT, Eklund PC, Sjöholm RE, Eckerman CSE, Pohjamo SP, Holmbom BR (2003c) Antioxidant activity of knotwood extractives and phenolic compounds of selected tree species. J Agric Food Chem 51(26):7600–7606

    Article  PubMed  Google Scholar 

  • Willför S, Nisula L, Hemming J, Reunanen M, Holmbom B (2004) Bioactive phenolic substances in industrially important tree species. Part 2: knots and stemwood of fir species. Holzforschung 58(6):650–659

    Article  Google Scholar 

  • Willför SM, Sundberg AC, Rehn PW, Holmbom BR, Saranpaeae PT (2005) Distribution of lignans in knots and adjacent stemwood of Picea abies. Holz Roh- Werkst 63(5):353–357

    Article  Google Scholar 

  • Willför SM, Hafizoğlu H, Tümen I, Yazici H, Arfan M, Ali M, Holmbom B (2007) Extractives of Turkish and Pakistani tree species. Holz Roh- Werkst 65(3):215–221

    Article  Google Scholar 

  • Yang N, Qin S, Wang M, Chen B, Yuan N, Fan Y, Yao S, Jiao P, Yu Y, Zhang Y, Wang J (2012) Pinocembrin, a major flavonoid in propolis, improves the biological functions of EPCs derived from rat bone marrow through the PI3K-eNOS-NO signaling pathway. Cytotechnology. doi:10.1007/s10616-012-9502-x

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Spanish “Ministry of Science and Innovation” for supporting this study in the framework of the research project “Development and evaluation of processing methods for biorefineries” (reference CTQ2011-22972) and to Xunta de Galicia (INBIOMED project) for additional financial support. Both projects were partially funded by the FEDER Program of the European Union (“Unha maneira de facer Europa”). Ms. Sandra Rivas thanks the Ministry for her predoctoral grant. Dr. Enma Conde thanks the COST Action FP0901 and the Process Chemistry Centre—Åbo Akademi University for the funding received through the Short Term Scientific Mission 090412-016530 and the Johan Gadolin Scholarship, respectively. Docent Annika Smeds is acknowledged for help with the MS analyses. The research leading to these results has received funding from the WoodWisdom-Net Research Programme, which is a transnational R&D program jointly funded by national funding organizations within the framework of the ERA-NET WoodWisdom-Net 2. This work was also part of the activities at the Process Chemistry Centre at Åbo Akademi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Parajó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde, E., Fang, W., Hemming, J. et al. Recovery of bioactive compounds from Pinus pinaster wood by consecutive extraction stages. Wood Sci Technol 48, 311–323 (2014). https://doi.org/10.1007/s00226-013-0604-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-013-0604-1

Keywords

Navigation