Skip to main content
Log in

Generic Results for Concatenation Hierarchies

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

In the theory of formal languages, the understanding of concatenation hierarchies of regular languages is one of the most fundamental and challenging topics. In this paper, we survey progress made on this problem since 1971. We also establish new generic statements regarding this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In fact, the original formulation of Pin and Straubing considers level 2 in the Straubing-Thérien hierarchy and not level \(\frac {3}{2}\).

References

  1. Almeida, J.: Some algorithmic problems for Pseudovarieties. Publicationes Mathematicae Debrecen 54, 531–552 (1999). Proceedings of Automata and Formal Languages, VIII

    MathSciNet  MATH  Google Scholar 

  2. Arfi, M.: Polynomial operations on rational languages. In: STACS’87, Lect. Notes Comp. Sci., pp. 198–206. Springer (1987)

  3. Arfi, M.: Opérations polynomiales et hiérarchies de concaténation. Theoret. Comp. Sci. 91(1), 71–84 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, volume 129 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  5. Bojańczyk, M.: Star height via games. In: LICS’15, pp. 214–219. IEEE Computer Society (2015)

  6. Branco, M., Pin, J.-É.: Equations defining the polynomial closure of a lattice of regular languages. In: ICALP 2009, volume 5556 of Lect. Notes Comp. Sci., pp. 115–126. Springer (2009)

  7. Brzozowski, J.A.: Developments in the theory of regular languages. In: IFIP Congress, pp. 29–40 (1980)

  8. Brzozowski, J.A.: Open problems about regular languages. In: Book, R.V. (ed.) Formal Language Theory, pp. 23–47. Academic Press (1980)

  9. Brzozowski, J.A., Cohen, R.S.: Dot-depth of star-free events. J. Comput. Syst. Sci. 5(1), 1–16 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brzozowski, J.A., Knast, R.: The dot-depth hierarchy of star-free languages is infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colcombet, T.: Factorization forests for infinite words and applications to countable scattered linear orderings. Theor. Comput. Sci. 411(4-5), 751–764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dejean, F., Schützenberger, M.P.: On a question of Eggan. Inf. Control. 9(1), 23–25 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eggan, L.C.: Transition graphs and the star-height of regular events. Michigan Math. J. 10(4), 385–397 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glaßer, C., Schmitz, H.: Languages of dot-depth 3/2. Theory Comput. Syst. 42(2), 256–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hashiguchi, K.: Representation theorems on regular languages. J. Comput. Syst. Sci. 27(1), 101–115 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hashiguchi, K.: Algorithms for determining relative star height and star height. Inf. Comput. 78(2), 124–169 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirsten, D.: Distance desert automata and the star height problem. RAIRO-Theor. Inf. Appl. 39(3), 455–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J. (eds.) Annals of Mathematics Studies 34, pp. 3–41. Princeton University Press (1956)

  19. Knast, R.: A semigroup characterization of dot-depth one languages. RAIRO - Theor. Inform. Appl. 17(4), 321–330 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kufleitner, M.: The height of factorization forests. In: Proceedings of the 33rd International Symposium on Mathematical Foundations of Computer Science, MFCS’08, pp. 443–454 (2008)

  21. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  22. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  23. Perrin, D., Pin, J.-É.: First-order logic and star-free sets. J. Comput. Syst. Sci. 32(3), 393–406 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pin, J.-É.: A variety theorem without complementation. Russian mathem. (Iz. VUZ) 39, 74–83 (1995)

    Google Scholar 

  25. Pin, J.-É.: An explicit formula for the intersection of two polynomials of regular languages. In: DLT 2013, Volume 7907 of Lect. Notes Comp. Sci., pp. 31–45. Springer (2013)

  26. Pin, J.-E.́: Mathematical Foundations of Automata Theory. In preparation (2016)

  27. Pin, J.-É.: Open Problems About Regular Languages, 35 Years Later. World Scientific (2017)

  28. Pin, J.-É., Straubing, H.: Monoids of upper triangular boolean matrices. In: Semigroups. Structure and Universal Algebraic Problems, vol. 39, pp. 259–272. North-Holland (1985)

  29. Pin, J.-É., Weil, P.: Polynomial closure and unambiguous product. In: ICALP’95, Lect. Notes Comp. Sci., pp. 348–359. Springer (1995)

  30. Pin, J.-É., Weil, P.: Polynomial closure and unambiguous product. Theory Comput. Syst. 30(4), 383–422 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pin, J.-É., Weil, P.: The wreath product principle for ordered semigroups. Commun. Algebra 30(12), 5677–5713 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Place, T.: Separating regular languages with two quantifier alternations. In: LICS’15, pp. 202–213 (2015)

  33. Place, T.: Separating regular languages with two quantifiers alternations. To appear. For a preliminary version see arXiv:1707.03295 (2018)

  34. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierarchy on words. In: ICALP’14, Lect. Notes Comp. Sci., pp. 342–353. Springer (2014)

  35. Place, T., Zeitoun, M.: Separation and the successor relation. In: STACS’15, pp. 662–675. Leibniz-Zentrum fuer Informatik, Lipics (2015)

  36. Place, T., Zeitoun, M.: The covering problem: a unified approach for investigating the expressive power of logics. In: MFCS’16, pp. 77:1–77:15. Leibniz-Zentrum fuer Informatik, Lipics (2016)

  37. Place, T., Zeitoun, M.: Adding successor: a transfer theorem for separation and covering. arXiv:1709.10052 (2017)

  38. Place, T., Zeitoun, M.: Concatenation hierarchies: new bottle, old wine. In: Weil, P. (ed.) CSR 2017, volume 10304 of Lect. Notes Comp. Sci., pp. 25–37. Springer (2017)

  39. Place, T., Zeitoun, M.: The covering problem. arXiv:1707.03370 (2017)

  40. Place, T., Zeitoun, M.: Going higher in first-order quantifier alternation hierarchies on words. arXiv:1707.05696 (2017)

  41. Place, T., Zeitoun, M.: Separation for dot-depth two. In: LICS 2017, pp. 1–12. IEEE Computer Society (2017)

  42. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  43. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control. 8(2), 190–194 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  44. Simon, I.: Hierarchies of events of dot-depth one (1972)

  45. Simon, I.: Piecewise testable events. In: Proceedings of the 2nd GI Conference on Automata Theory and Formal Languages, pp. 214–222. Springer (1975)

  46. Simon, I.: Factorization forests of finite height. Theoret. Comp. Sci. 72(1), 65–94 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Steinberg, B.: A delay theorem for pointlikes. Semigroup Forum 63(3), 281–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Straubing, H.: A generalization of the Schützenberger product of finite monoids. Theoret. Comp. Sci. 13(2), 137–150 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  49. Straubing, H.: Finite semigroup varieties of the form V * D. J Pure Appl. Algebra 36, 53–94 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  50. Thérien, D.: Classification of finite monoids: the language approach. Theoret. Comp. Sci. 14(2), 195–208 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  51. Thérien, D.: The power of diversity. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) Descriptional Complexity of Formal Systems, volume 6808 of Lect. Notes Comp. Sci., pp. 43–54. Springer (2011)

  52. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. System Sci. 25(3), 360–376 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  53. Thomas, W.: An application of the Ehrenfeucht-Fraïssé game in formal language theory. Mémoires de la Société Mathématique de France 16, 11–21 (1984)

    Article  MATH  Google Scholar 

  54. Thomas, W.: A Concatenation game and the dot-depth hierarchy. In: Computation Theory and Logic, pp. 415–426. Springer, Berlin (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Zeitoun.

Additional information

This article is part of the Topical Collection on Computer Science Symposium in Russia

Funded by the DeLTA project (ANR-16-CE40-0007)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Place, T., Zeitoun, M. Generic Results for Concatenation Hierarchies. Theory Comput Syst 63, 849–901 (2019). https://doi.org/10.1007/s00224-018-9867-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-018-9867-0

Keywords

Navigation