Skip to main content
Log in

Geometric Hitting Set for Segments of Few Orientations

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the “hitting points”). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. We give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Afshani, P., Berglin, E., van Duijn, I., Nielsen, J.S.: Applications of incidence bounds in point covering problems. In: Proceedings 32nd International Symposium on Computational Geometry, LIPIcs, 51, 60:1–60:15, Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik (2016)

  2. Alon, N.: A non-linear lower bound for planar epsilon-nets. Discrete Comput Geom 47(2), 235–244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronov, B., Ezra, E., Sharir, M.: Small-size ε-nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39(7), 3248–3282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer Science & Business Media (2012)

  5. Balaban, I.J.: An optimal algorithm for finding segment intersections. In: Proceedings of 11th Symposium on Computational Geometry 211–219, ACM (1995)

  6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  7. Brimkov, V.E.: Approximability issues of guarding a set of segments. Int. J. Comput. Math. 90(8), 1653–1667 (2013)

    Article  MATH  Google Scholar 

  8. Brimkov, V.E., Leach, A., Mastroianni, M., Wu, J.: Experimental study on approximation algorithms for guarding sets of line segments. In: Advances in Visual Computing, 592–601, Springer (2010)

  9. Brimkov, V.E., Leach, A., Mastroianni, M., Wu, J.: Guarding a set of line segments in the plane. Theor. Comput. Sci. 412(15), 1313–1324 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brimkov, V.E., Leach, A., Wu, J., Mastroianni, M.: Approximation algorithms for a geometric set cover problem. Discrete Applied Math 160, 1039–1052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brodėn, B., Hammar, M., Nilsson, B.J.: Guarding Lines and 2-Link Polygons is APX-Hard. In: Proceedings of 13th Canadian Conference on Computational Geometry, 45–48 (2001)

  12. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14, 263–279 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carr, R.D., Fujito, T., Konjevod, G., Parekh, O.: A 2 1/10-approximation algorithm for a generalization of the weighted edge-dominating set problem. In: European Symposium on Algorithms, 132–142, Springer (2000)

  14. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clarkson, K.L.: Algorithms for polytope covering and approximation. In: Algorithms and Data Structures, 246–252, Springer (1993)

  16. Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric set cover. Discrete Comput. Geom. 37(1), 43–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dinur, I., Steurer, D.: Analytical Approach to Parallel Repetition. In: Proceedings of 46th Symposium on Theory of Computing, 624–633, ACM (2014)

  18. Dom, M., Fellows, M.R., Rosamond, F.A.: Parameterized complexity of stabbing rectangles and squares in the plane. In: WALCOM: Algorithms and Computation, 298–309, Springer (2009)

  19. Duh, R.C., Fürer, M.: Approximation of k-set cover by semi-local optimization. In: Proceedings of 29th Symposium on Theory of Computing, 256–264, ACM (1997)

  20. Dumitrescu, A., Jiang, M.: On the approximability of covering points by lines and related problems. Computational Geometry: Theory and Applications 48 (9), 703–717 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Even, G., Levi, R., Rawitz, D., Schieber, B., Shahar, S.M., Sviridenko, M.: Algorithms for capacitated rectangle stabbing and lot sizing with joint set-up costs. ACM Transactions on Algorithms 4(3), 34:1–34:17 (2008)

    Article  MathSciNet  Google Scholar 

  22. Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the VC-dimension is small. Inf. Process. Lett. 95(2), 358–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gaur, D.R., Bhattacharya, B.: Covering points by axis parallel lines. In: Proceedings 23rd European Workshop on Computational Geometry, 42–45 (2007)

  24. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant Ratio Approximation Algorithms for the Rectangle Stabbing Problem and the Rectilinear Partitioning Problem. In: Proceedings of European Symposium on Algorithms, 211–219, Springer (2000)

  25. Giannopoulos, P., Knauer, C., Rote, G., Werner, D.: Fixed-parameter tractability and lower bounds for stabbing problems. Computational Geometry: Theory and Applications 46, 839–860 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discret. Appl. Math. 30(1), 29–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heednacram, A.: The NP-Hardness of Covering Points with Lines, Paths and Tours and their Tractability with FPT-Algorithms, Ph.D. thesis, Griffith University (2010)

  28. Hochbaum, D.S., Maas, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32, 130–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Joshi, A., Narayanaswamy, N.: Approximation algorithms for hitting triangle-free sets of line segments. In: Proceedings of 14th Scandinavian Symposium and Workshops on Algorithm Theory, 357–367, Springer (2014)

  30. Kovaleva, S., Spieksma, F.C.: Approximation algorithms for rectangle stabbing and interval stabbing problems. SIAM J. Discret. Math. 20(3), 748–768 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kratsch, S., Philip, G., Ray, S.: Point line cover: the easy kernel is essentially tight. In: Proceedings of 25th ACM-SIAM Symposium on Discrete Algorithms, 1596–1606 (2014)

  32. Kumar, V.A., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1. In: Proceedings of 27th International Colloquium on Automata, Languages and Programming, 624–635 (2000)

  33. Langerman, S., Morin, P.: Covering things with things. Discrete Comput. Geom. 33(4), 717–729 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett. 1(5), 194–197 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. O’Rourke, J.: Art gallery theorems and algorithms. The international series of monographs on computer science. Oxford University Press, New York (1987)

  37. Pach, J., Tardos, G.: Tight lower bounds for the size of epsilon-nets. J. Am. Math. Soc. 26(3), 645–658 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Urrutia, J., et al.: Art gallery and illumination problems. Handbook of Computational Geometry 1(1), 973–1027 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. J. Mitchell acknowledges support from the US-Israel Binational Science Foundation (grant 2010074) and the National Science Foundation (CCF-1018388, CCF-1526406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. B. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekete, S.P., Huang, K., Mitchell, J.S.B. et al. Geometric Hitting Set for Segments of Few Orientations. Theory Comput Syst 62, 268–303 (2018). https://doi.org/10.1007/s00224-016-9744-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-016-9744-7

Keywords

Navigation