Skip to main content
Log in

Omega-Rational Expressions with Bounded Synchronization Delay

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

In 1965 Schützenberger published his famous result that star-free languages (\(\operatorname{SF}\)) and aperiodic languages (\(\operatorname{AP}\)) coincide over finite words, often written as \(\operatorname{SF}= \operatorname {AP}\). Perrin generalized \(\operatorname{SF} = \operatorname{AP}\) to infinite words in the mid 1980s. In 1973 Schützenberger presented another (and less known) characterization of aperiodic languages in terms of rational expressions where the use of the star operation is restricted to prefix codes with bounded synchronization delay and no complementation is used. We denote this class of languages by \(\operatorname{SD}\). In this paper, we present a generalization of \(\operatorname{SD}= \operatorname{AP}\) to infinite words. This became possible via a substantial simplification of the proof for the corresponding result for finite words. Moreover, we show that \(\operatorname{SD}= \operatorname{AP}\) can be viewed as more fundamental than \(\operatorname{SF}= \operatorname{AP}\) in the sense that the classical 1965 result of Schützenberger and its 1980s extension to infinite words by Perrin are immediate consequences of \(\operatorname{SD}= \operatorname{AP}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, A.: A syntactic congruence for rational ω-languages. Theor. Comput. Sci. 39, 333–335 (1985)

    Article  MATH  Google Scholar 

  2. Diekert, V., Gastin, P.: Pure future local temporal logics are expressively complete for Mazurkiewicz traces. Inf. Comput. 204, 1597–1619 (2006). Conference version in LATIN 2004, LNCS 2976, pp. 170–182 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata: History and Perspectives. Texts in Logic and Games, pp. 261–306. Amsterdam University Press, Amsterdam (2008)

    Google Scholar 

  4. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008). Special issue DLT 2007

    Article  MATH  MathSciNet  Google Scholar 

  5. Diekert, V., Kufleitner, M., Steinberg, B.: The Krohn-Rhodes theorem and local divisors. Fundam. Inform. 116(1–4), 65–77 (2012)

    MATH  MathSciNet  Google Scholar 

  6. Golomb, S.W., Gordon, B.: Codes with bounded synchronization delay. Inf. Control 8(4), 355–372 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kamp, J.A.W.: Tense logic and the theory of linear order. PhD thesis, University of California, Los Angeles (California) (1968)

  8. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  9. Meyberg, K.: Lectures on algebras and triple systems. Technical report, University of Virginia, Charlottesville (1972)

  10. Perrin, D.: Recent results on automata and infinite words. In: Mathematical Foundations of Computer Science, Prague, 1984. Lecture Notes in Comput. Sci., vol. 176, pp. 134–148. Springer, Berlin (1984)

    Google Scholar 

  11. Perrin, D., Pin, J.-É.: Infinite Words. Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  12. Pin, J.-É.: Varieties of Formal Languages. North Oxford Academic, London (1986)

    Book  MATH  Google Scholar 

  13. Pin, J.-É., Straubing, H., Thérien, D.: Locally trivial categories and unambiguous concatenation. J. Pure Appl. Algebra 52(3), 297–311 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)

    Article  MATH  Google Scholar 

  15. Schützenberger, M.P.: Sur certaines opérations de fermeture dans les langages rationnels. In: Symposia Mathematica, vol. XV. Convegno di Informatica Teorica, INDAM, Roma, 1973, pp. 245–253. Academic Press, London (1975)

    Google Scholar 

  16. Schützenberger, M.P.: Sur le produit de concaténation non ambigu. Semigroup Forum 13, 47–75 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In: Semigroups, Algorithms, Automata and Languages 2001, Proceedings, pp. 475–500. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Jean-Éric Pin for bringing the class \(\operatorname{SD}\) to our attention and for the proposal that the notion of local divisor might lead to a simplified proof for \(\operatorname{SD}(A^{*}) = \operatorname{AP}(A^{*})\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Kufleitner.

Additional information

The second author gratefully acknowledges the support by the German Research Foundation (DFG) under grant DI 435/5-1 and the support by ANR 2010 BLAN 0202 FREC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diekert, V., Kufleitner, M. Omega-Rational Expressions with Bounded Synchronization Delay. Theory Comput Syst 56, 686–696 (2015). https://doi.org/10.1007/s00224-013-9526-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-013-9526-4

Keywords

Navigation