Skip to main content
Log in

Quotient Complexity of Closed Languages

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

A language L is prefix-closed if, whenever a word w is in L, then every prefix of w is also in L. We define suffix-, factor-, and subword-closed languages in an analogous way, where by factor we mean contiguous subsequence, and by subword we mean scattered subsequence. We study the state complexity (which we prefer to call quotient complexity) of operations on prefix-, suffix-, factor-, and subword-closed languages. We find tight upper bounds on the complexity of the subword-closure of arbitrary languages, and on the complexity of boolean operations, concatenation, star, and reversal in each of the four classes of closed languages. We show that repeated applications of positive closure and complement to a closed language result in at most four distinct languages, while Kleene closure and complement give at most eight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In contrast to some authors, we use a set of initial states, since we require the reverse of an nfa to be an nfa.

References

  1. Ang, T., Brzozowski, J.: Languages convex with respect to binary relations, and their closure properties. Acta Cybern. 19(2), 445–464 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Avgustinovich, S.V., Frid, A.E.: A unique decomposition theorem for factorial languages. Int. J. Algebra Comput. 15, 149–160 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bassino, F., Giambruno, L., Nicaud, C.: Complexity of operations on cofinite languages. In: López-Ortiz, A. (ed.) Proceedings of the 9th Latin American Theoretical Informatics Symposium (LATIN). LNCS, vol. 6034, pp. 222–233. Springer, Berlin (2010)

    Google Scholar 

  4. Brzozowski, J.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brzozowski, J.: Complexity in convex languages. In: Dediu, A.H., Fernau, H., Martin-Vide, C. (eds.) Proceedings of the 4th International Conference on Language and Automata Theory (LATA). LNCS, vol. 6031, pp. 1–15. Springer, Berlin (2010)

    Chapter  Google Scholar 

  6. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71–89 (2010)

    Google Scholar 

  7. Brzozowski, J., Grant, E., Shallit, J.: Closures in formal languages and Kuratowski’s theorem. Int. J. Found. Comput. Sci. 22, 301–321 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. Theor. Comput. Sci. 470, 36–52 (2013)

    Article  MATH  Google Scholar 

  9. Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-, factor-, and subword-free languages. In: Dömösi, P., Szabolcs, I. (eds.) Proceedings of the 13th Int. Conference on Automata and Formal Languages (AFL), pp. 123–137. Institute of Mathematics and Informatics, College of Nyíregyháza, Nyíregyháza (2011)

    Google Scholar 

  10. Brzozowski, J., Santean, N.: Predictable semiautomata. Theor. Comput. Sci. 410, 3236–3249 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brzozowski, J., Shallit, J., Xu, Z.: Decision problems for convex languages. Inf. Comput. 209, 353–367 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Câmpeanu, C., Culik, K. II, Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) Revised papers from the 4th International Workshop on Automata Implementation, (WIA). LNCS, vol. 2214, pp. 60–70. Springer, Berlin (2001)

    Google Scholar 

  13. de Luca, A., Varricchio, S.: Some combinatorial properties of factorial languages. In: Capocelli, R. (ed.) Sequences: Combinatorics, Compression, Security, and Transmission, pp. 258–266. Springer, Berlin (1990)

    Chapter  Google Scholar 

  14. Galil, Z., Simon, J.: A note on multiple-entry finite automata. J. Comput. Syst. Sci. 12, 350–351 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. Syst. Sci. 9(1), 1–19 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gruber, H., Holzer, M., Kutrib, M.: The size of Higman-Haines sets. Theor. Comput. Sci. 387, 167–176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gruber, H., Holzer, M., Kutrib, M.: More on the size of Higman-Haines sets: effective constructions. Fundam. Inform. 91(1), 105–121 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Haines, L.H.: On free monoids partially ordered by embedding. J. Comb. Theory 6(1), 94–98 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  19. Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular languages. Theor. Comput. Sci. 410(27–29), 2537–2548 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Han, Y.S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular languages. In: Ésik, Z., Fülöp, Z. (eds.) Automata, Formal Languages, and Related Topics, pp. 99–115. University of Szeged, Szeged (2009)

    Google Scholar 

  21. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic finite automata. J. Autom. Lang. Comb. 6, 453–466 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation. Int. J. Found. Comput. Sci. 16, 511–529 (2005)

    Article  MATH  Google Scholar 

  23. Kao, J.Y., Rampersad, N., Shallit, J.: On NFAs where all states are final, initial, or both. Theor. Comput. Sci. 410(47–49), 5010–5021 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kuratowski, C.: Sur l’opération \(\overline{A}\) de l’analysis situs. Fundam. Math. 3, 182–199 (1922) (in French)

    MATH  Google Scholar 

  25. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194, 1266–1268 (1970) (in Russian). English translation: Soviet Math. Dokl. 11, 1373–1375 (1970)

    MathSciNet  Google Scholar 

  26. Mirkin, B.G.: On dual automata. Kibernetika 2, 7–10 (1966) (in Russian). English translation: Cybernetics 2, 6–9 (1970)

    MathSciNet  Google Scholar 

  27. Okhotin, A.: On the state complexity of scattered substrings and superstrings. Fundam. Inform. 99(3), 325–338 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Int. J. Found. Comput. Sci. 13, 145–159 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and Programming, pp. 481–492. North-Holland, Amsterdam (1973)

    Google Scholar 

  30. Veloso, P.A.S., Gill, A.: Some remarks on multiple-entry finite automata. J. Comput. Syst. Sci. 18, 304–306 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)

    MATH  MathSciNet  Google Scholar 

  32. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Brzozowski.

Additional information

This research was supported by the Natural Sciences and Engineering Research Council of Canada grant OGP0000871, by VEGA grant 2/0183/11, and by grant APVV-0035-10.

A much shorter preliminary version of this work appeared as an arXiv preprint at http://arxiv.org/abs/0912.1034, and in F. Ablayev, E.W. Mayr, eds., Proc. 5th International Computer Science Symposium in Russia (CSR 2010). Volume 6072 of LNCS, Springer (2010), pp. 84–95.

Most of this work was done while C. Zou was at the David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzozowski, J., Jirásková, G. & Zou, C. Quotient Complexity of Closed Languages. Theory Comput Syst 54, 277–292 (2014). https://doi.org/10.1007/s00224-013-9515-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-013-9515-7

Keywords

Navigation