Skip to main content

Advertisement

Log in

Associations Between Body Composition and Bone Health in Children and Adolescents: A Systematic Review

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

More clarification on the associations between children’s and adolescents’ lean and fat mass (LM and FM) on the one hand and their bone health on the other hand is needed, given the rising prevalence of overweight and obesity in this population. This systematic literature review aimed to describe the current evidence on these associations. Data sources were Medline/PubMed, EMBASE, CINAHL and The Cochrane Library (up to November 2014). Search items included LM, FM, children and adolescents (0–18 years), bone health measured with dual-energy X-ray absorptiometry and peripheral quantitative computed tomography (pQCT) and search items concerning study design: observational and longitudinal studies. The study populations were healthy children and adolescents including obese children. Children with other diseases and clinical series of study subjects were excluded. Based on the studies included in this review (n = 19), there is a consensus that the contribution of LM to the variance of the different bone parameters is larger than the contribution of FM and that an increase in LM is associated with an increase in bone parameters. Most of the studies indicated that the increase in bone parameters seen in overweight and obese children and adolescents is due to an increase in LM and not to greater FM. The results on the association between body fat and bone parameters were contradictory and depended on children’s age and sex. Still more data from studies with a longitudinal study design using (high resolution) pQCT and a representative sample are needed to get further insight in the associations between body fat and bone parameters in children, specifically concerning differences in sex, skeletal site and fat depots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

aBMD:

Areal bone mineral density

BA:

Bone area

BF LM:

Bone-free lean mass

BF %:

Body fat percentage

BMC:

Bone mineral content

BSI:

Bone strength index

C:

Controls

Cort vBMD:

Cortical volumetric bone mineral density

CortA:

Cortical area

CortC:

Cortical bone mineral content

CortTh:

Cortical thickness

DXA:

Dual-energy X-ray absorptiometry

FM:

Fat mass

FN:

Femoral neck

FS:

Femoral shaft

HRpQCT:

High-resolution pQCT

HW:

Healthy weight

L2–L4:

Lumbar segment 2–4

LM:

Lean mass

Ln:

Natural logarithm

LS:

Lumbar spine

NA:

Not applicable

NS:

Not significant

OW:

Overweight

Pcir:

Periosteal circumference

pQCT:

Peripheral quantitative computed tomography

pSSI:

Polar strength strain index

QCT:

Quantitative computed tomography

RG:

Rhythmic gymnasts

SSI:

Strength strain index

TA:

Total area

T BMC:

Total bone mineral content

TH:

Total hip

T vBMD:

Total volumetric bone mineral density

TR:

Trochanter

Trab vBMD:

Trabecular volumetric bone mineral density

TrabC:

Trabecular bone mineral content

TrabTh:

Trabecular thickness

vBMD:

Volumetric bone mineral density

WB:

Whole body

WB aBMD:

Whole-body areal bone mineral density

WB BMC:

Whole-body bone mineral content

References

  1. Masi L (2008) Epidemiology of osteoporosis. Clin Cases Min Bone Metab 5:11–13

    Google Scholar 

  2. Hansen MA, Overgaard K, Riis BJ, Christiansen C (1991) Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. BMJ 303:961–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305

    Article  PubMed  Google Scholar 

  4. Wey HE, Binkley TL, Beare TM, Wey CL, Specker BL (2011) Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. J Clin Endocrinol Metab 96:106–114

    Article  CAS  PubMed  Google Scholar 

  5. Rokholm B, Baker JL, Sorensen TI (2010) The levelling off of the obesity epidemic since the year 1999—a review of evidence and perspectives. Obes Rev 11:835–846

    Article  CAS  PubMed  Google Scholar 

  6. World Health Organisation (2015) Commission on ending childhood obesity

  7. Paulis WD, Silva S, Koes BW, van Middelkoop M (2014) Overweight and obesity are associated with musculoskeletal complaints as early as childhood: a systematic review. Obes Rev 15:52–67

    Article  CAS  PubMed  Google Scholar 

  8. Dimitri P, Bishop N, Walsh JS, Eastell R (2012) Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 50:457–466

    Article  CAS  PubMed  Google Scholar 

  9. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100

    Article  PubMed  PubMed Central  Google Scholar 

  10. Binkley TL, Berry R, Specker BL (2008) Methods for measurement of pediatric bone. Rev Endocr Metab Disord 9:95–106

    Article  PubMed  Google Scholar 

  11. Armijo-Olivo S, Stiles CR, Hagen NA, Biondo PD, Cummings GG (2012) Assessment of study quality for systematic reviews: a comparison of the Cochrane Collaboration Risk of Bias Tool and the Effective Public Health Practice Project Quality Assessment Tool: methodological research. J Eval Clin Pract 18:12–18

    Article  PubMed  Google Scholar 

  12. El Hage R, Moussa E, Jacob C (2010) Bone mineral content and density in obese, overweight, and normal-weighted sedentary adolescent girls. J Adolesc Health 47:591–595

    Article  PubMed  Google Scholar 

  13. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    CAS  PubMed  Google Scholar 

  14. Mosca LN, Goldberg TB, da Silva VN, da Silva CC, Kurokawa CS, Rizzo ACB, Corrente JE (2014) Excess body fat negatively affects bone mass in adolescents. Nutrition 30:847–852

    Article  PubMed  Google Scholar 

  15. Valdimarsson O, Kristinsson JO, Stefansson SO, Valdimarsson S, Sigurdsson G (1999) Lean mass and physical activity as predictors of bone mineral density in 16–20-year old women. J Intern Med 245:489–496

    Article  CAS  PubMed  Google Scholar 

  16. Viljakainen HT, Pekkinen M, Saarnio E, Karp H, Lamberg-Allardt C, Makitie O (2011) Dual effect of adipose tissue on bone health during growth. Bone 48:212–217

    Article  CAS  PubMed  Google Scholar 

  17. Arabi A, Tamim H, Nabulsi M, Maalouf J, Khalife H, Choucair M, Vieth R, El-Hajj FG (2004) Sex differences in the effect of body-composition variables on bone mass in healthy children and adolescents. Am J Clin Nutr 80:1428–1435

    CAS  PubMed  Google Scholar 

  18. Baptista F, Barrigas C, Vieira F, Santa-Clara H, Homens PM, Fragoso I, Teixeira PJ, Sardinha LB (2012) The role of lean body mass and physical activity in bone health in children. J Bone Min Metab 30:100–108

    Article  Google Scholar 

  19. Gracia-Marco L, Ortega FB, Jimenez-Pavon D, Rodriguez G, Castillo MJ, Vicente-Rodriguez G, Moreno LA (2012) Adiposity and bone health in Spanish adolescents. The HELENA study. Osteoporos Int 23:937–947

    Article  CAS  PubMed  Google Scholar 

  20. Ka K, Rousseau MC, Lambert M, O’Loughlin J, Henderson M, Tremblay A, Alos N, Nicolau B (2013) Association between lean and fat mass and indicators of bone health in prepubertal caucasian children. Horm Res Paediatr 80:154–162

    Article  CAS  PubMed  Google Scholar 

  21. Manzoni P, Brambilla P, Pietrobelli A, Beccaria L, Bianchessi A, Mora S, Chiumello G (1996) Influence of body composition on bone mineral content in children and adolescents. Am J Clin Nutr 64:603–607

    CAS  PubMed  Google Scholar 

  22. Sudhagoni RG, Wey HE, Djira GD, Specker BL (2012) Longitudinal effects of fat and lean mass on bone accrual in infants. Bone 50:638–642

    Article  PubMed  Google Scholar 

  23. Parm AL, Saar M, Parna K, Jurimae J, Maasalu K, Neissaar I, Jurimae T (2011) Relationships between anthropometric, body composition and bone mineral parameters in 7–8-year-old rhythmic gymnasts compared with controls. Coll Antropol 35:739–745

    PubMed  Google Scholar 

  24. Wiebe PN, Blimkie CJR, Farpour-Lambert N, Briody J, Woodhead H, Cowell C, Howman-Giles R (2002) Correlates and determinants of bone mineral density in prepubertal girls. Pediatr Exerc Sci 14:345–357

    Google Scholar 

  25. Witzke KA, Snow CM (1999) Lean body mass and leg power best predict bone mineral density in adolescent girls. Med Sci Sports Exerc 31:1558–1563

    Article  CAS  PubMed  Google Scholar 

  26. Farr JN, Chen Z, Lisse JR, Lohman TG, Going SB (2010) Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls. Bone 46:977–984

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hoy CL, Macdonald HM, McKay HA (2013) How does bone quality differ between healthy-weight and overweight adolescents and young adults? Clin Orthop Relat Res 471:1214–1225

    Article  PubMed  Google Scholar 

  28. Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA (2008) Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Min Res 23:1946–1953

    Article  Google Scholar 

  29. Cole ZA, Harvey NC, Kim M, Ntani G, Robinson SM, Inskip HM, Godfrey KM, Cooper C, Dennison EM (2012) Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children. Bone 50:562–567

    Article  CAS  PubMed  Google Scholar 

  30. Fields DA, Goran MI (1985) Body composition techniques and the four-compartment model in children. J Appl Physiol 2000(89):613–620

    Google Scholar 

  31. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Calbet JA (2005) Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br J Sports Med 39:611–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu PW, Cowell CT, Lloyd-Jones SA, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590

    CAS  PubMed  Google Scholar 

  33. Wiebe PN, Blimkie CJR, Farpour-Lambert N, Briody J, Woodhead H, Cowell C, Howman-Giles R (2002) Correlates and determinants of bone mineral density in prepubertal girls. Pediatr Exerc Sci 14:345–357

    Google Scholar 

  34. Fricke O, Schoenau E (2007) The ‘Functional Muscle–Bone Unit’: probing the relevance of mechanical signals for bone development in children and adolescents. Growth Horm IGF Res 17:1–9

    Article  PubMed  Google Scholar 

  35. Schoenau E (2005) From mechanostat theory to development of the “Functional Muscle–Bone-Unit”. J Musculoskelet Neuronal Interact 5:232–238

    CAS  PubMed  Google Scholar 

  36. Farr JN, Amin S, LeBrasseur NK, Atkinson EJ, Achenbach SJ, McCready LK, Joseph ML III, Khosla S (2014) Body composition during childhood and adolescence: relations to bone strength and microstructure. J Clin Endocrinol Metab 99:4641–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo SS, Chumlea WC, Roche AF, Siervogel RM (1997) Age- and maturity-related changes in body composition during adolescence into adulthood: the Fels Longitudinal Study. Int J Obes Relat Metab Disord 21:1167–1175

    Article  CAS  PubMed  Google Scholar 

  38. Hauspie RC, Wachholder A, Vercauteren M (1993) Reference values of the height and weight growth and growth rate of Belgian boys and girls 3–18 years of age. Arch Fr Pediatr 50:763–769

    CAS  PubMed  Google Scholar 

  39. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK, Melton LJ III, Riggs BL, Amin S, Muller R, Khosla S (2009) Bone structure at the distal radius during adolescent growth. J Bone Min Res 24:1033–1042

    Article  Google Scholar 

  40. Vandewalle S, Taes Y, Van HM, Debode P, Herregods N, Ernst C, Roef G, Van CE, Roggen I, Verhelle F, Kaufman JM, De SJ (2013) Bone size and bone strength are increased in obese male adolescents. J Clin Endocrinol Metab 98:3019–3028

    Article  CAS  PubMed  Google Scholar 

  41. Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Sioen is financially supported by the Research Foundation—Flanders (Grant No: 1.2.683.14.N.00). Dr. Jiménez-Pavón was supported by a grant from the Spanish Ministry of Science and Innovation—MINECO (Grant No: RYC-2014-16938).

Conflict of interest

Isabelle Sioen, Elisa Lust, Stefaan De Henauw, Luis A Moreno and David Jimenez-Pavon declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sioen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sioen, I., Lust, E., De Henauw, S. et al. Associations Between Body Composition and Bone Health in Children and Adolescents: A Systematic Review. Calcif Tissue Int 99, 557–577 (2016). https://doi.org/10.1007/s00223-016-0183-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0183-x

Keywords

Navigation