Skip to main content

Advertisement

Log in

Peritoneal Delivery of Sodium Pyrophosphate Blocks the Progression of Pre-existing Vascular Calcification in Uremic Apolipoprotein-E Knockout Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is generally associated with disturbances of mineral and bone metabolism. They contribute to the development of vascular calcification (VC), a strong, independent predictor of cardiovascular risk. Pyrophosphate (PPi), an endogenous inhibitor of hydroxyapatite formation, has been shown to slow the progression of VC in uremic animals. Since in patients with CKD treatment is usually initiated for already existing calcifications, we aimed to compare the efficacy of PPi therapy with that of the phosphate binder sevelamer, using a uremic apolipoprotein-E knockout mouse model with advanced VCs. After CKD creation or sham surgery, 12-week-old female mice were randomized to one sham group and four CKD groups (n = 18–19/group). Treatment was initiated 8 weeks after left nephrectomy allowing prior VC development. Uremic groups received either intraperitoneal PPi (high dose, 1.65 mg/kg or low dose, 0.33 mg/kg per day), oral sevelamer (3 % in diet), or placebo treatment for 8 weeks. Both intima and media calcifications worsened with time in placebo-treated CKD mice, based on both quantitative image analysis and biochemical measurements. Progression of calcification between 8 and 16 weeks was entirely halted by PPi treatment, as it was by sevelamer treatment. PPi did not induce consistent bone histomorphometry changes. Finally, the beneficial vascular action of PPi probably involved mechanisms different from that of sevelamer. Further studies are needed to gain more precise insight into underlying mechanisms and to see whether PPi administration may also be useful in patients with CKD and VC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Kidney disease: improving global outcomes (KDIGO): definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 69:1945–1953

    Article  CAS  PubMed  Google Scholar 

  2. De Oliveira RB, Okazaki H, Stinghen AE, Drüeke TB, Massy ZA, Jorgetti V (2013) Vascular calcification in chronic kidney disease: a review. J Bras Nefrol 35:147–161

    Article  CAS  PubMed  Google Scholar 

  3. Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL, Shanahan CM (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15:2857–2867

    Article  CAS  PubMed  Google Scholar 

  4. Jono S, Shioi A, Ikari Y, Nishizawa Y (2006) Vascular calcification in chronic kidney disease. J Bone Miner Metab 24:176–181

    Article  PubMed  Google Scholar 

  5. Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM (2011) Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 109:697–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cancela AL, Santos RD, Titan SM, Goldenstein PT, Rochitte CE, Lemos PA, dos Reis LM, Graciolli FG, Jorgetti V, Moysés RM (2012) Phosphorus is associated with coronary artery disease in patients with preserved renal function. PLoS One 7:e36883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Villa-Bellosta R, Sorribas V (2011) Calcium phosphate deposition with normal phosphate concentration. Role of pyrophosphate. Circ J 75:2705–2710

    Article  CAS  PubMed  Google Scholar 

  8. Shanahan CM, Cary NR, Salisbury JR, Proudfoot D, Weissberg PL, Edmonds ME (1999) Medial localization of mineralization-regulating proteins in association with monckeberg’s sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 100:2168–2176

    Article  CAS  PubMed  Google Scholar 

  9. Lomashvili KA, Narisawa S, Millán JL, O’Neill WC (2014) Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int 85:1351–1356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lomashvili KA, Cobbs S, Hennigar RA, Hardcastle KI, O’Neill WC (2004) Phosphate-induced vascular calcification: role of pyrophosphate and osteopontin. J Am Soc Nephrol 15:1392–1401

    Article  CAS  PubMed  Google Scholar 

  11. Lomashvili KA, Khawandi W, O’Neill WC (2005) Reduced plasma pyrophosphate levels in hemodialysis patients. J Am Soc Nephrol 16:2495–2500

    Article  CAS  PubMed  Google Scholar 

  12. O’Neill WC, Lomashvili KA, Malluche HH, Faugere MC, Riser BL (2011) Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int 79:512–517

    Article  PubMed Central  PubMed  Google Scholar 

  13. Riser BL, Barreto FC, Rezg R, Valaitis PW, Cook CS, White JA, Gass JH, Maizel J, Louvet L, Drueke TB, Holmes CJ, Massy ZA (2011) Daily peritoneal administration of sodium pyrophosphate in a dialysis solution prevents the development of vascular calcification in a mouse model of uraemia. Nephrol Dial Transplant 26:3349–3357

    Article  CAS  PubMed  Google Scholar 

  14. Amerling R, Harbord NB, Pullman J, Feinfeld DA (2010) Bisphosphonate use in chronic kidney disease: association with adynamic bone disease in a bone histology series. Blood Purif 29:293–299

    Article  CAS  PubMed  Google Scholar 

  15. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int 9:S1–S130

    Google Scholar 

  16. Barreto FC, de Oliveira RB, Benchitrit J, Louvet L, Rezg R, Poirot S, Jorgetti V, Drüeke TB, Riser BL, Massy ZA (2014) Effects of pyrophosphate delivery in a peritoneal dialysis solution on bone tissue of apolipoprotein-E knockout mice with chronic kidney disease. J Bone Miner Metab 32:636–644

    Article  CAS  PubMed  Google Scholar 

  17. Chertow GM, Burke SK, Raggi P, Treat to Goal Working Group (2002) Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 62:245–252

    Article  CAS  PubMed  Google Scholar 

  18. Block GA, Spiegel DM, Ehrlich J, Mehta R, Lindbergh J, Dreisbach A, Raggi P (2005) Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int 68:1815–1824

    Article  CAS  PubMed  Google Scholar 

  19. Jamal SA, Vandermeer B, Raggi P, Mendelssohn DC, Chatterley T, Dorgan M, Lok CE, Fitchett D, Tsuyuki RT (2013) Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet 382:1268–1277

    Article  CAS  PubMed  Google Scholar 

  20. Phan O, Ivanovski O, Nguyen-Khoa T, Mothu N, Angulo J, Westenfeld R, Ketteler M, Meert N, Maizel J, Nikolov IG, Vanholder R, Lacour B, Drüeke TB, Massy ZA (2005) Sevelamer prevents uremia-enhanced atherosclerosis progression in apolipoprotein E-deficient mice. Circulation 112:2875–2882

    Article  CAS  PubMed  Google Scholar 

  21. Mathew S, Lund RJ, Strebeck F, Tustison KS, Geurs T, Hruska KA (2007) Reversal of the adynamic bone disorder and decreased vascular calcification in chronic kidney disease by sevelamer carbonate therapy. J Am Soc Nephrol 18:122–130

    Article  CAS  PubMed  Google Scholar 

  22. Nikolov IG, Joki N, Nguyen-Khoa T, Guerrera IC, Maizel J, Benchitrit J, Machado dos Reis L, Edelman A, Lacour B, Jorgetti V, Drüeke TB, Massy ZA (2012) Lanthanum carbonate, like sevelamer-HCl, retards the progression of vascular calcification and atherosclerosis in uremic apolipoprotein E-deficient mice. Nephrol Dial Transplant 27:505–513

    Article  CAS  PubMed  Google Scholar 

  23. Massy ZA, Ivanovski O, Nguyen-Khoa T, Angulo J, Szumilak D, Mothu N, Phan O, Daudon M, Lacour B, Drüeke TB, Muntzel MS (2005) Uremia accelerates both atherosclerosis and arterial calcification in apolipoprotein E knockout mice. J Am Soc Nephrol 16:109–116

    Article  CAS  PubMed  Google Scholar 

  24. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  25. Ivanovski O, Nikolov IG, Joki N, Caudrillier A, Phan O, Mentaverri R, Maizel J, Hamada Y, Nguyen-Khoa T, Fukagawa M, Kamel S, Lacour B, Drüeke TB, Massy ZA (2009) The calcimimetic R-568 retards uremiaenhanced vascular calcification and atherosclerosis in apolipoprotein E deficient (apoE-/-) mice. Atherosclerosis 205:55–62

    Article  CAS  PubMed  Google Scholar 

  26. Vlassara H, Uribarri J, Cai W, Goodman S, Pyzik R, Post J, Grosjean F, Woodward M, Striker GE (2012) Effects of sevelamer on HbA1c, inflammation, and advanced glycation end products in diabetic kidney disease. Clin J Am Soc Nephrol 7:934–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Nikolov IG, Joki N, Maizel J, Lacour B, Drüeke TB, Massy ZA (2006) Pleiotropic effects of the non-calcium phosphate binder sevelamer. Kidney Int Suppl 105:S16–S23

    Article  CAS  PubMed  Google Scholar 

  28. Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L, Carvalho AB, Jorgetti V, Canziani ME, Moysés RM (2010) Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol 5:286–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Desjardins L, Liabeuf S, Renard C, Lenglet A, Lemke HD, Choukroun G, Drueke TB, Massy ZA, European Uremic Toxin (EUTox) Work Group (2012) FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos Int 23:2017–2025

    Article  CAS  PubMed  Google Scholar 

  30. Jean G, Terrat JC, Vanel T, Hurot JM, Lorriaux C, Mayor B, Chazot C (2009) High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant 24:2792–2796

    Article  CAS  PubMed  Google Scholar 

  31. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Russo D, Miranda I, Ruocco C, Battaglia Y, Buonanno E, Manzi S, Russo L, Scafarto A, Andreucci VE (2007) The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer. Kidney Int 72:1255–1261

    Article  CAS  PubMed  Google Scholar 

  33. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY, Crouthamel MH, Chavkin NW, Rahman M, Wahl P, Amaral AP, Hamano T, Master SR, Nessel L, Chai B, Xie D, Kallem RR, Chen J, Lash JP, Kusek JW, Budoff MJ, Giachelli CM, Wolf M (2013) Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 83:1159–1168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Qunibi W, Moustafa M, Muenz LR, He DY, Kessler PD, Diaz-Buxo JA, Budoff M (2008) CARE-2 Investigators: a 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am J Kidney Dis 51:952–965

    Article  CAS  PubMed  Google Scholar 

  35. Barreto DV, Barreto Fde C, de Carvalho AB, Cuppari L, Draibe SA, Dalboni MA, Moyses RM, Neves KR, Jorgetti V, Miname M, Santos RD, Canziani ME (2008) Phosphate binder impact on bone remodeling and coronary calcification—results from the BRiC study. Nephron Clin Pract 110c:273–283

    Article  Google Scholar 

  36. Pan B, Farrugia AN, To LB, Findlay DM, Green J, Lynch K, Zannettino AC (2004) The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-alpha converting enzyme (TACE). J Bone Miner Res 19:147–154

    Article  CAS  PubMed  Google Scholar 

  37. Flurkey K, Currer JM, Harrison DE (2007) The mouse in aging research. In: Fox JG et al (eds) The mouse in biomedical research, 2nd edn. American College Laboratory Animal Medicine (Elsevier), Burlington

    Google Scholar 

  38. Quinn R (2005) Comparing rats to humans age: how old is my rat in people years? Nutrition 21:775–777

    Article  PubMed  Google Scholar 

  39. Frost HM, Villaneuva AR (1960) Tetracycline staining of newly forming bone and mineralizing cartilage in vivo. Stain Technol 35:135–138

    CAS  PubMed  Google Scholar 

  40. Zafar TA, Weaver CM, Zhao Y, Martin BR, Wastney ME (2004) Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr 134:399–402

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant from Baxter. We are grateful to Picardie Regional Council and Jules Verne University of Picardie for awarding postdoctoral grants to Fellype C. Barreto and Rodrigo Bueno de Oliveira (who also received a postdoctoral grant from CNPq, Brazil). The authors thank Charlotte Paquet, Jules Verne University of Picardie, for valuable technical help. We also wish to thank Arpita Das, Lianmei Feng, Ahmed Fariyal and Paul Zieski, Baxter Healthcare, for the preparation of the peritoneal dialysis solutions.

Conflict of interest

Tilman B. Drüeke declares having received honoraria as a consultant and/or speaker from Shire, Genzyme and Amgen. Ziad A. Massy declares having received honoraria as speaker from FMC, Genzyme and Amgen. Vanda Jorgetti declares having received speaker honoraria, consulting fees and/or research funding from Amgen, Abbott and Genzyme. At the time of the study, Bruce L. Riser was an employee of Baxter Healthcare, a company with potential commercial interest in this research. Other authors at Inserm Unit-1088, UFR de Médicine/Pharmacie, Amiens and the Division of Nephrology, Amiens University Hospital and Jules Verne University of Picardy, Amiens, France have no competing interest.

Human and Animal Rights and Informed Consent

All animals were handled in accordance with French legislation and to the international guidelines. The protocol was approved by an institutional animal care committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad A. Massy.

Additional information

Drs. Loïc Louvet and Rodrigo B. de Oliveira equally contributed to the study.

Drs. Ziad A. Massy and Bruce L. Riser equally contributed as originators and supervisors of the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, R.B., Louvet, L., Riser, B.L. et al. Peritoneal Delivery of Sodium Pyrophosphate Blocks the Progression of Pre-existing Vascular Calcification in Uremic Apolipoprotein-E Knockout Mice. Calcif Tissue Int 97, 179–192 (2015). https://doi.org/10.1007/s00223-015-0020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-0020-7

Keywords

Navigation