Skip to main content

Advertisement

Log in

Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The skeleton serves as the principal site for hematopoiesis in adult terrestrial vertebrates. The function of the hematopoietic system is to maintain homeostatic levels of all circulating blood cells, including myeloid cells, lymphoid cells, red blood cells, and platelets. This action requires the daily production of more than 500 billion blood cells. The vast majority of these cells are synthesized in the bone marrow, where they arise from a limited number of hematopoietic stem cells (HSCs) that are multipotent and capable of extensive self-renewal. These attributes of HSCs are best demonstrated by marrow transplantation, where even a single HSC can repopulate the entire hematopoietic system. HSCs are therefore adult stem cells capable of multilineage repopulation, poised between cell fate choices which include quiescence, self-renewal, differentiation, and apoptosis. While HSC fate choices are in part determined by multiple stochastic fluctuations of cell autonomous processes, according to the niche hypothesis, signals from the microenvironment are also likely to determine stem cell fate. While it had long been postulated that signals within the bone marrow could provide regulation of hematopoietic cells, it is only in the past decade that advances in flow cytometry and genetic models have allowed for a deeper understanding of the microenvironmental regulation of HSCs. In this review, we will highlight the cellular regulatory components of the HSC niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hartenstein V (2006) Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol 22:677–712

    CAS  PubMed  Google Scholar 

  2. Bianco P, Robey PG et al (2010) “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum Gene Ther 21(9):1057–1066

    CAS  PubMed  Google Scholar 

  3. Chang MK, Raggatt LJ et al (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244

    CAS  PubMed  Google Scholar 

  4. Fazeli PK, Horowitz MC et al (2013) Marrow fat and bone—new perspectives. J Clin Endocrinol Metab 98(3):935–945

    CAS  PubMed  Google Scholar 

  5. Wilson A, Murphy MJ et al (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18(22):2747–2763

    CAS  PubMed  Google Scholar 

  6. Xie Y, Yin T et al (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457(7225):97–101

    CAS  PubMed  Google Scholar 

  7. Zhang J, Niu C et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    CAS  PubMed  Google Scholar 

  8. Kiel MJ, Yilmaz OH et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    CAS  PubMed  Google Scholar 

  9. Sugiyama T, Kohara H et al (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988

    CAS  PubMed  Google Scholar 

  10. Mendez-Ferrer S, Michurina TV et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Nombela-Arrieta C, Pivarnik G et al (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15(5):533–543

    CAS  PubMed  Google Scholar 

  12. Cantor AB, Orkin SH (2001) Hematopoietic development: a balancing act. Curr Opin Genet Dev 11(5):513–519

    CAS  PubMed  Google Scholar 

  13. Enver T, Pera M et al (2009) Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4(5):387–397

    CAS  PubMed  Google Scholar 

  14. Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462(7273):587–594

    CAS  PubMed  Google Scholar 

  15. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  16. Gong JK (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science 199(4336):1443–1445

    CAS  PubMed  Google Scholar 

  17. Lord BI, Testa NG et al (1975) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46(1):65–72

    CAS  PubMed  Google Scholar 

  18. Lo Celso C, Fleming HE et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457(7225):92–96

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Nilsson SK, Dooner MS et al (1997) Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 89(11):4013–4020

    CAS  PubMed  Google Scholar 

  20. Nilsson SK, Johnston HM et al (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97(8):2293–2299

    CAS  PubMed  Google Scholar 

  21. Kai T, Spradling A (2003) An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc Natl Acad Sci USA 100(8):4633–4638

    CAS  PubMed  Google Scholar 

  22. Fuchs E, Tumbar T et al (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    CAS  PubMed  Google Scholar 

  23. Losick VP, Morris LX et al (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21(1):159–171

    CAS  PubMed  Google Scholar 

  24. Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9(2):129–136

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906

    CAS  PubMed  Google Scholar 

  26. Dzierzak E (1999) Embryonic beginnings of definitive hematopoietic stem cells. Ann NY Acad Sci 872:256–262

    CAS  PubMed  Google Scholar 

  27. Fliedner MC (2002) Research within the field of blood and marrow transplantation nursing: how can it contribute to higher quality of care? Int J Hematol 76(Suppl 2):289–291

    PubMed  Google Scholar 

  28. Osawa M, Hanada K et al (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272):242–245

    CAS  PubMed  Google Scholar 

  29. Suzuki N, Ohneda O et al (2006) Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc Natl Acad Sci USA 103(7):2202–2207

    CAS  PubMed  Google Scholar 

  30. Storb R, Graham TC et al (1977) Demonstration of hemopoietic stem cells in the peripheral blood of baboons by cross circulation. Blood 50(3):537–542

    CAS  PubMed  Google Scholar 

  31. Wagers AJ, Sherwood RI et al (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297(5590):2256–2259

    CAS  PubMed  Google Scholar 

  32. Wright DE, Wagers AJ et al (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294(5548):1933–1936

    CAS  PubMed  Google Scholar 

  33. Lapid K, Itkin T et al (2013) GSK3beta regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement. J Clin Invest 123(4):1705–1717

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Katayama Y, Battista M et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421

    CAS  PubMed  Google Scholar 

  35. Mendez-Ferrer S, Lucas D et al (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447

    CAS  PubMed  Google Scholar 

  36. Haylock DN, Williams B et al (2007) Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 25(4):1062–1069

    CAS  PubMed  Google Scholar 

  37. Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179(5):1677–1682

    CAS  PubMed  Google Scholar 

  38. Taichman RS, Reilly MJ et al (1996) Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87(2):518–524

    CAS  PubMed  Google Scholar 

  39. Visnjic D, Kalajzic I et al (2001) Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J Bone Miner Res 16(12):2222–2231

    CAS  PubMed  Google Scholar 

  40. Visnjic D, Kalajzic Z et al (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103(9):3258–3264

    CAS  PubMed  Google Scholar 

  41. Calvi LM, Adams GB et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    CAS  PubMed  Google Scholar 

  42. Marusic A, Kalinowski JF et al (1993) Production of leukemia inhibitory factor mRNA and protein by malignant and immortalized bone cells. J Bone Miner Res 8(5):617–624

    CAS  PubMed  Google Scholar 

  43. Arai F, Hirao A et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161

    CAS  PubMed  Google Scholar 

  44. Jung Y, Wang J et al (2007) Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110(1):82–90

    CAS  PubMed  Google Scholar 

  45. Qian H, Buza-Vidas N et al (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1(6):671–684

    CAS  PubMed  Google Scholar 

  46. Weber JM, Forsythe SR et al (2006) Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone 39(3):485–493

    CAS  PubMed  Google Scholar 

  47. Yoshihara H, Arai F et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1(6):685–697

    CAS  PubMed  Google Scholar 

  48. Adams GB, Martin RP et al (2007) Therapeutic targeting of a stem cell niche (vol 25, pg 238, 2007). Nat Biotechnol 25(8):944–945

    CAS  Google Scholar 

  49. Bromberg O, Frisch BJ et al (2012) Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood 120(2):303–313

    CAS  PubMed  Google Scholar 

  50. Calvi LM, Sims NA et al (2001) Activated parathyroid hormone/parathyroid hormone–related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 107(3):277–286

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Goltzman D (2008) Studies on the mechanisms of the skeletal anabolic action of endogenous and exogenous parathyroid hormone. Arch Biochem Biophys 473(2):218–224

    CAS  PubMed  Google Scholar 

  52. Ballen KK, Shpall EJ et al (2007) Phase I trial of parathyroid hormone to facilitate stem cell mobilization. Biol Blood Marrow Transplant 13(7):838–843

    CAS  PubMed  Google Scholar 

  53. Brunner S, Theiss HD et al (2007) Primary hyperparathyroidism is associated with increased circulating bone marrow-derived progenitor cells. Am J Physiol Endocrinol Metab 293(6):E1670–E1675

    CAS  PubMed  Google Scholar 

  54. Lymperi S, Horwood N et al (2008) Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111(3):1173–1181

    CAS  PubMed  Google Scholar 

  55. Schepers K, Hsiao EC et al (2012) Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. Blood 120(17):3425–3435

    CAS  PubMed  Google Scholar 

  56. Ma YD, Park C et al (2009) Defects in osteoblast function but no changes in long-term repopulating potential of hematopoietic stem cells in a mouse chronic inflammatory arthritis model. Blood 114(20):4402–4410

    CAS  PubMed  Google Scholar 

  57. Nakamura Y, Arai F et al (2010) Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood 116(9):1422–1432

    CAS  PubMed  Google Scholar 

  58. Cheng YH, Chitteti BR et al (2011) Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res 26(5):1111–1121

    CAS  PubMed  Google Scholar 

  59. Chitteti BR, Cheng YH et al (2010) Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115(16):3239–3248

    CAS  PubMed  Google Scholar 

  60. Chitteti BR, Cheng YH et al (2010) Osteoblast lineage cells expressing high levels of Runx2 enhance hematopoietic progenitor cell proliferation and function. J Cell Biochem 111(2):284–294

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Calvi LM, Bromberg O et al (2012) Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 119(11):2489–2499

    CAS  PubMed  Google Scholar 

  62. Xiao L, Liu P et al (2009) Exported 18-kDa isoform of fibroblast growth factor-2 is a critical determinant of bone mass in mice. J Biol Chem 284(5):3170–3182

    CAS  PubMed  Google Scholar 

  63. Yoon KA, Cho HS et al (2012) Differential regulation of CXCL5 by FGF2 in osteoblastic and endothelial niche cells supports hematopoietic stem cell migration. Stem Cells Dev 21:3391–3402

    CAS  PubMed  Google Scholar 

  64. Song X, Zhu CH et al (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296(5574):1855–1857

    CAS  PubMed  Google Scholar 

  65. Hosokawa K, Arai F et al (2010) Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6(3):194–198

    CAS  PubMed  Google Scholar 

  66. Hosokawa K, Arai F et al (2010) Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116(4):554–563

    CAS  PubMed  Google Scholar 

  67. Levesque JP (2012) N(o)-cadherin role for HSCs. Blood 120(2):237–238

    CAS  PubMed  Google Scholar 

  68. Dominici M, Rasini V et al (2009) Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114(11):2333–2343

    CAS  PubMed  Google Scholar 

  69. Greenbaum AM, Revollo LD et al (2012) N-cadherin in osteolineage cells is not required for maintenance of hematopoietic stem cells. Blood 120(2):295–302

    CAS  PubMed  Google Scholar 

  70. Frisch BJ, Porter RL et al (2009) In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood 114(19):4054–4063

    CAS  PubMed  Google Scholar 

  71. Goessling W, Allen RS et al (2011) Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8(4):445–458

    CAS  PubMed Central  PubMed  Google Scholar 

  72. North TE, Goessling W et al (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447(7147):1007–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Porter RL, Georger MA et al (2013) Prostaglandin E2 increases hematopoietic stem cell survival and accelerates hematopoietic recovery after radiation injury. Stem Cells 31(2):372–383

    CAS  PubMed  Google Scholar 

  74. Sugimura R, He XC et al (2012) Noncanonical wnt signaling maintains hematopoietic stem cells in the niche. Cell 150(2):351–365

    CAS  PubMed  Google Scholar 

  75. Bedi B, Li JY et al (2012) Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci USA 109(12):E725–E733

    CAS  PubMed  Google Scholar 

  76. Tawfeek H, Bedi B et al (2010) Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss. PLoS One 5(8):e12290

    PubMed Central  PubMed  Google Scholar 

  77. Terauchi M, Li JY et al (2009) T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab 10(3):229–240

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Li JY, Adams J et al (2012) PTH expands short-term murine hemopoietic stem cells through T cells. Blood 120(22):4352–4362

    CAS  PubMed  Google Scholar 

  79. Fulciniti M, Tassone P et al (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114(2):371–379

    CAS  PubMed  Google Scholar 

  80. Qiang YW, Chen Y et al (2008) Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 112(1):196–207

    CAS  PubMed  Google Scholar 

  81. Vallet S, Pozzi S et al (2011) A novel role for CCL3 (MIP-1alpha) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia 25(7):1174–1181

    CAS  PubMed  Google Scholar 

  82. Colmone A, Amorim M et al (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322(5909):1861–1865

    CAS  PubMed  Google Scholar 

  83. Frisch BJ, Ashton JM et al (2012) Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119(2):540–550

    CAS  PubMed  Google Scholar 

  84. Shiozawa Y, Pedersen EA et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121(4):1298–1312

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Simmons PJ, Torok-Storb B (1991) CD34 expression by stromal precursors in normal human adult bone marrow. Blood 78(11):2848–2853

    CAS  PubMed  Google Scholar 

  86. Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62

    CAS  PubMed  Google Scholar 

  87. Park D, Spencer JA et al (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10(3):259–272

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Masuda S, Ageyama N et al (2009) Cotransplantation with MSCs improves engraftment of HSCs after autologous intra-bone marrow transplantation in nonhuman primates. Exp Hematol 37(10):1250–1257

    CAS  PubMed  Google Scholar 

  89. Ahn JY, Park G et al (2010) Intramarrow injection of beta-catenin-activated, but not naive mesenchymal stromal cells stimulates self-renewal of hematopoietic stem cells in bone marrow. Exp Mol Med 42(2):122–131

    CAS  PubMed  Google Scholar 

  90. Sacchetti B, Funari A et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    CAS  PubMed  Google Scholar 

  91. McNiece I, Harrington J et al (2004) Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 6(4):311–317

    CAS  PubMed  Google Scholar 

  92. Robinson SN, Ng J et al (2006) Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 37(4):359–366

    CAS  PubMed Central  PubMed  Google Scholar 

  93. de Lima M, McNiece I et al (2012) Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 367(24):2305–2315

    PubMed Central  PubMed  Google Scholar 

  94. Pinho S, Lacombe J et al (2013) PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210:1351–1367

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Nie Y, Han YC et al (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205(4):777–783

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Tzeng YS, Li H et al (2011) Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117(2):429–439

    CAS  PubMed  Google Scholar 

  97. Ara T, Itoi M et al (2003) A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 170(9):4649–4655

    CAS  PubMed  Google Scholar 

  98. Bonig H, Priestley GV et al (2004) PTX-sensitive signals in bone marrow homing of fetal and adult hematopoietic progenitor cells. Blood 104(8):2299–2306

    CAS  PubMed  Google Scholar 

  99. Kawabata K, Ujikawa M et al (1999) A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci USA 96(10):5663–5667

    CAS  PubMed  Google Scholar 

  100. Peled A, Petit I et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283(5403):845–848

    CAS  PubMed  Google Scholar 

  101. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Greenbaum A, Hsu YM et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Ding L, Saunders TL et al (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Chen MJ, Yokomizo T et al (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457(7231):887–891

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kiel MJ, Yilmaz OH et al (2008) CD150 cells are transiently reconstituting multipotent progenitors with little or no stem cell activity. Blood 111(8):4413–4414 author reply 4414–4415

    CAS  PubMed  Google Scholar 

  106. Butler JM, Nolan DJ et al (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6(3):251–264

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Chute JP, Muramoto GG et al (2006) Molecular profile and partial functional analysis of novel endothelial cell-derived growth factors that regulate hematopoiesis. Stem Cells 24(5):1315–1327

    CAS  PubMed  Google Scholar 

  108. Kobayashi H, Butler JM et al (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12(11):1046–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Hooper AT, Butler JM et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4(3):263–274

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Winkler IG, Barbier V et al (2012) Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 18(11):1651–1657

    CAS  PubMed  Google Scholar 

  111. Barker JE (1994) Sl/Sld hematopoietic progenitors are deficient in situ. Exp Hematol 22(2):174–177

    CAS  PubMed  Google Scholar 

  112. Barker JE (1997) Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp Hematol 25(6):542–547

    CAS  PubMed  Google Scholar 

  113. Yamazaki S, Iwama A et al (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113(6):1250–1256

    CAS  PubMed  Google Scholar 

  114. Yamazaki S, Ema H et al (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158

    CAS  PubMed  Google Scholar 

  115. Kirkland JL, Tchkonia T et al (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37(6):757–767

    CAS  PubMed  Google Scholar 

  116. Rosen CJ, Ackert-Bicknell C et al (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19(2):109–124

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Berkahn L, Keating A (2004) Hematopoiesis in the elderly. Hematology 9(3):159–163

    CAS  PubMed  Google Scholar 

  118. Van Zant G, Liang Y (2012) Concise review: hematopoietic stem cell aging, life span, and transplantation. Stem Cells Transl Med 1(9):651–657

    PubMed Central  PubMed  Google Scholar 

  119. DiMascio L, Voermans C et al (2007) Identification of adiponectin as a novel hemopoietic stem cell growth factor. J Immunol 178(6):3511–3520

    CAS  PubMed  Google Scholar 

  120. Berner HS, Lyngstadaas SP et al (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35(4):842–849

    CAS  PubMed  Google Scholar 

  121. Naveiras O, Nardi V et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Lymperi S, Ersek A et al (2011) Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117(5):1540–1549

    CAS  PubMed  Google Scholar 

  123. Mansour A, Abou-Ezzi G et al (2012) Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med 209(3):537–549

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Adams GB, Chabner KT et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439(7076):599–603

    CAS  PubMed  Google Scholar 

  125. Christopher MJ, Liu F et al (2009) Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 114(7):1331–1339

    CAS  PubMed  Google Scholar 

  126. Levesque JP, Hendy J et al (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111(2):187–196

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Petit I, Szyper-Kravitz M et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. [Erratum appears in Nat Immunol 2002;3(8):787]. Nat Immunol 3(7):687–694

    CAS  PubMed  Google Scholar 

  128. Semerad CL, Christopher MJ et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106(9):3020–3027

    CAS  PubMed  Google Scholar 

  129. Kollet O, Dar A et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12(6):657–664

    CAS  PubMed  Google Scholar 

  130. Miyamoto K, Yoshida S et al (2011) Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J Exp Med 208(11):2175–2181

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Winkler IG, Barbier V et al (2010) Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116(3):375–385

    CAS  PubMed  Google Scholar 

  132. Winkler IG, Sims NA et al (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828

    CAS  PubMed  Google Scholar 

  133. Yona S, Kim KW et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91

    CAS  PubMed  Google Scholar 

  134. Alexander KA, Chang MK et al (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532

    CAS  PubMed  Google Scholar 

  135. Chow A, Lucas D et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Ludin A, Itkin T et al (2012) Monocytes–macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 13(11):1072–1082

    CAS  PubMed  Google Scholar 

  137. Chow A, Huggins M et al (2013) CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19(4):429–436

    CAS  PubMed  Google Scholar 

  138. Westerterp M, Gourion-Arsiquaud S et al (2012) Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11(2):195–206

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Liu F, Poursine-Laurent J et al (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95(10):3025–3031

    CAS  PubMed  Google Scholar 

  140. Christopher MJ, Rao M et al (2011) Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 208(2):251–260

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Heissig B, Hattori K et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Levesque JP, Takamatsu Y et al (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98(5):1289–1297

    CAS  PubMed  Google Scholar 

  143. Levesque JP, Liu F et al (2004) Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104(1):65–72

    CAS  PubMed  Google Scholar 

  144. Singh P, Hu P et al (2012) Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells. Leukemia 26(11):2375–2383

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Boneberg EM, Hareng L et al (2000) Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood 95(1):270–276

    CAS  PubMed  Google Scholar 

  146. Wang Y, Wan C et al (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117(6):1616–1626

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Rankin EB, Wu C et al (2012) The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 149(1):63–74

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Forristal CE, Winkler IG et al (2013) Pharmacologic stabilization of HIF-1alpha increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood 121(5):759–769

    CAS  PubMed  Google Scholar 

  149. Takubo K, Goda N et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7(3):391–402

    CAS  PubMed  Google Scholar 

  150. Levesque JP, Winkler IG et al (2007) Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 25(8):1954–1965

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. B. J. Frisch for review of the manuscript and members of the Calvi and Link laboratories for helpful discussions. This work is supported by the National Institutes of Health (NIDDK grants DK076876 and DK081843 to L. M. C. and HL60772 to D. C. L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Calvi.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvi, L.M., Link, D.C. Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche. Calcif Tissue Int 94, 112–124 (2014). https://doi.org/10.1007/s00223-013-9805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9805-8

Keywords

Navigation