Calcified Tissue International

, Volume 94, Issue 1, pp 112–124

Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche

Review

DOI: 10.1007/s00223-013-9805-8

Cite this article as:
Calvi, L.M. & Link, D.C. Calcif Tissue Int (2014) 94: 112. doi:10.1007/s00223-013-9805-8

Abstract

The skeleton serves as the principal site for hematopoiesis in adult terrestrial vertebrates. The function of the hematopoietic system is to maintain homeostatic levels of all circulating blood cells, including myeloid cells, lymphoid cells, red blood cells, and platelets. This action requires the daily production of more than 500 billion blood cells. The vast majority of these cells are synthesized in the bone marrow, where they arise from a limited number of hematopoietic stem cells (HSCs) that are multipotent and capable of extensive self-renewal. These attributes of HSCs are best demonstrated by marrow transplantation, where even a single HSC can repopulate the entire hematopoietic system. HSCs are therefore adult stem cells capable of multilineage repopulation, poised between cell fate choices which include quiescence, self-renewal, differentiation, and apoptosis. While HSC fate choices are in part determined by multiple stochastic fluctuations of cell autonomous processes, according to the niche hypothesis, signals from the microenvironment are also likely to determine stem cell fate. While it had long been postulated that signals within the bone marrow could provide regulation of hematopoietic cells, it is only in the past decade that advances in flow cytometry and genetic models have allowed for a deeper understanding of the microenvironmental regulation of HSCs. In this review, we will highlight the cellular regulatory components of the HSC niche.

Keywords

AdipocyteBone marrow cellMesenchymal stem cellOsteoblastOsteoclast

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine and DentistryUniversity of RochesterRochesterUSA
  2. 2.Division of Oncology, Department of MedicineWashington University School of MedicineSt. LouisUSA