Skip to main content
Log in

Vitamin D: A Necessity for Children and Adolescents in Greece

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Children and adolescents with the high bone turnover comprise a high risk population for vitamin D insufficiency. A sample of 178 clinically healthy children aged 3 to 18 years who came from public schools and lived in North West of Greece participated in the study. They were grouped into three age groups (I: 3–10, II: 11–14 and III: 15–18 years of age). Blood samples were taken during winter and summer months for determining calciotropic hormones, calcium, phosphate and biochemical markers of bone synthesis.

A high percentage (47%) of the subjects aged 15–18 years was found to have 25OHD <10 ng/ml in winter but much less (13–14%) of the younger ages (13–14 years), while in the summer they were all >10 ng/ml. The prevalence was even higher in the girls of the older group accompanied by lower Pi concentrations again in winter (win:1.19±0.03, sum:1.93±0.03 mmol/l, p < 0.001). The 24,25(OH)2D levels were changing in parallel to 25OHD, but again in the older subjects, during winter, they were by 2/3 lower than the summer ones (0.73±0.10 vs. 2.41±0.20 ng/ml, p < 0.001). No significant differences were found between seasons and groups in the 1,25(OH)2D levels. The biochemical markers of bone synthesis, osteocalcin (OC) and total alkaline phosphatase (ALP), were found significantly lower in the girls of the older group both in winter and summer respectively.Even in a sunny country like Greece the adolescents living in an urban area are in high risk for vitamin D deficiency during winter. Supplementation with vitamin D of milk, of popular beverages and perhaps some foods would be of help.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holick MF (2002) Vitamin D: the underappreciated D-light hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes 9:87–98

    Article  CAS  Google Scholar 

  2. Matsuoka LY, Ide L, Wortsman J, MacLaughlin JA, Holick MF (1987) Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab 64:1165–1168

    PubMed  CAS  Google Scholar 

  3. Lapatsanis P, Deliyanni V, Doxiadis S (1968) Vitamin D deficiency rickets in Greece. J Pediatr 73:195–202

    PubMed  CAS  Google Scholar 

  4. Ala-Houhala M, Koskinen T, Koskinen M, Visakorpi JK (1988) Double blind study on the need for vitamin D supplementation in prepubertal children. Acta Paediatr Scand 77:89–93

    PubMed  CAS  Google Scholar 

  5. Fehily AM, Coles RJ, Evans WD, Elwood PC 1992) Factors affecting bone density in young adults. Am J Clin Nutr 56:579–586

    PubMed  CAS  Google Scholar 

  6. Matkovic V, Selic T, Wardlow GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis: inference from a cross-sectional model. J Clin Invest 93:799–808

    PubMed  CAS  Google Scholar 

  7. Ribot C, Tremolliers F, Pouilles JM (1995) Late consequences of a low peak bone mass. Acta Paediatr 84(suppl 411):31–36

    Google Scholar 

  8. Shaw NJ, Bishop NJ (1995) Mineral accretion in growing bones–a framework for the future? Arch Dis Child 72:177–179

    PubMed  CAS  Google Scholar 

  9. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R (1991) Critical years and stages of puberty for spinal and femoral bone mass accummulation during adolescence. J Clin Endocrinol Metab 73:555–563

    PubMed  CAS  Google Scholar 

  10. Gunnes M, Lehman EH (1996) Physical activity and dietary constituents as predictors of forearm cortical and trabecular bone gain in healthy children and adolescents. A prospectivee study. Acta Paediatr 85:19–25

    PubMed  CAS  Google Scholar 

  11. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity and weight velocity and the stages of puberty. Arch Dis Child 51:170–179

    PubMed  CAS  Google Scholar 

  12. Challa A, Bevington A, Angier CM, Asbury AJ, Preston CJ, Russell RGG (1985) A technique for the measurement of orthophosphate in human erythrocytes and some studies of its determinants. Clin Sci (Colch) 69:429–434

    CAS  Google Scholar 

  13. Moulas A, Challa A, Lapatsanis D (1996) Method of quantitative determination of the main metabolites of vitamin D [25OHD, 24,15(OH)2D and 1,25(OH)2D] in the same sample of serum or plasma. Ostoun (Athens) 7:17–24

    Google Scholar 

  14. Shepard RM, Horst RL, Hamstra AJ, DeLuca HF (1979) Determination of vitamin D and its metabolites in plasma from normal and anephric man. J Biochem 182:55–69

    CAS  Google Scholar 

  15. Reinhardt TM, Horst RL, Orf JW, Hollis BW (1984) Microassay for 1,25-dihydroxyvitamin not requiring high performance liquid chromatography: application to clinical studies. J Clin Endocrinol Metab 58:91–98

    PubMed  CAS  Google Scholar 

  16. McKenna MJ, Freaney R (1998) Secondary hyperparathyroidism in the elderly: means to defining hypovitaminosis D. Osteoporos Int 8(suppl 2):S3–S6

    PubMed  CAS  Google Scholar 

  17. Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR (2002) Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone 30:771–777

    Article  PubMed  CAS  Google Scholar 

  18. Wharton B, Bishop N (2003) Rickets. Lancet 362:1389–1400

    Article  PubMed  CAS  Google Scholar 

  19. Lips P, Chapuy MC, Dawson-Hughes B, Pols AP, Holick MF (1999) An international comparison of serum 25-hydroxyvitamin D measurements. Osteoporos Int 9:394–397

    Article  PubMed  CAS  Google Scholar 

  20. Ala-Houhala M, Parviainen MT, Pyykko K, Visakorpi JK (1984) Serum 25-hydroxyvitamin D levels in Finnish children aged 2 to 17 years. Acta Paediatr Scand 73:232–236

    PubMed  CAS  Google Scholar 

  21. Zeghoud F, Delaveyne R, Rehel P, Chalas J, Garabédian M, Odiévre M (1995) Vitamin D et maturation pubertaire. Intéret et tolérance d’une supplémentation vitaminique D en période hivernale. Arch Pediatr 2:221–226

    Article  PubMed  CAS  Google Scholar 

  22. Fuleihan GEH, Nabulsi M, Choucair M, Salamoun M, Hajj-Shahine G, Kirizian A, Tannous R (2001) Hypovitaminosis D in healthy children. Pediatrics 107:E53

    Article  Google Scholar 

  23. Docio S, Riancho JA, Pérez A, Olmos JM, Amado JA, Conzalez-Macias J (1998) Seasonal deficiency of vitamin D in children: a potential target for osteoporosis-preventing strategies? J Bone Miner Res 13:544–548

    PubMed  CAS  Google Scholar 

  24. Tucker KL (2003) Does milk intake in childhood protect against later osteoporosis? Am J Clin Nutr 77:10–11

    PubMed  CAS  Google Scholar 

  25. Lawson E (1985) Vitamin D. In: Diplock AE (ed), Fat soluble vitamins. Their biochemistry and applications. Heineman, London, pp 76–163

    Google Scholar 

  26. Tangpricha V, Koutkia P, Rieke SM, Chen TC, Perez AA, Holick MF (2003) Fortification of orange juice with vitamin D: a novel approach for enhancing vitamin D nutritional health. Am J Clin Nutr 77:1478–1483

    PubMed  CAS  Google Scholar 

  27. McKenna MJ (1992) Differences in vitamin D status between countries in young adults and the elderly. Am J Med 93:69–77

    Article  PubMed  CAS  Google Scholar 

  28. Parfitt AM (1990) Osteomalacia and related disorders. In: Avioli LV, Krane SM (eds), Metabolic bone disease and clinically related disorders, 2nd ed. W B Saunders, Philadelphia, pp 329–396

    Google Scholar 

  29. Guillemant J, Taupin P, Le HT, Taright N, Allemandou A, Peres G, Guillemant S (1999) Vitamin D status during puberty in French healthy male adolescents. Osteoporos Int 10:222–225

    Article  PubMed  CAS  Google Scholar 

  30. Kalkwarf HJ, Khoury JC, Lanphear BP (2003) Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr 77:257–265

    PubMed  CAS  Google Scholar 

  31. Lechtonen-Veromaa M, Mottonen T, Irjala K, Kakkainen M, Lamberg-Allardt C, Hakola P, Viikari J (1999) Vitamin D is low and hypovitaminosis D common in healthy 9- to 15-year old Finnish girls. Eur J Clin Nutr 53:746–751

    Google Scholar 

  32. Narchi H, El Jamil M, Kulaylat N (2001) Symptomatic rickets in adolescence. Arch Dis Child 84:501–503

    Article  PubMed  CAS  Google Scholar 

  33. Oliveri B, Wittich A, Mautalen C, Chaperon A, Kizlansky A (2000) Peripheral bone mass is not affected by winter vitamin D deficiency in children and young adults from Ushuaia. Calcif Tissue Int 67:220–224

    Article  PubMed  CAS  Google Scholar 

  34. Binderman I, Somjen D (1984) 24,25-Dihydroxycholecalciferol induces the growth of chick cartilage in vitro. Endocrinology 115:430–432

    PubMed  CAS  Google Scholar 

  35. Ornoy A, Goodwin D, Edelstein S (1978) 24,25-Dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature 276:517–519

    Article  PubMed  CAS  Google Scholar 

  36. Chesney RW, Rosen JF, Hamstra AJ, Smith C, Mahaffey K, DeLuca HF (1981) Absence of seasonal variation in serum concentration of 1,25-dihydroxyvitamin D in summer. J Clin Endocrinol Metab 53:139–142

    PubMed  CAS  Google Scholar 

  37. Taylor AF, Norman ME (1984) Vitamin D metabolite levels in normal children. Pediatr Res 18:886–890

    PubMed  CAS  Google Scholar 

  38. Ilich JZ, Badenhop NE, Jelic T, Clairmont AC, Nagode LA, Matkovic V (1997) Calcitriol and bone mass accumulation in females during puberty. Calcif Tissue Int 61:104–109

    Article  PubMed  CAS  Google Scholar 

  39. Round JM (1973) Plasma calcium, magnesium, phosphorus and alkaline phosphatase levels in normal British schoolchildren. BMJ 3:137–140

    Article  PubMed  CAS  Google Scholar 

  40. Douglas AS, Miller MH, Reid DM, Hutchison JD, Poster RW, Robins SP (1996) Seasonal differences in biochemical parameters of bone remodeling. J Clin Pathol 49:284–289

    PubMed  CAS  Google Scholar 

  41. Kristinsson JO, Valdimarsson O, Sigurdsson G, Franzson L, Olafsson I, Steingrimsdottir L (1998) Serum 25-hydroxyvitamin D levels and bone mineral density in 16–20-year-old girls. Lack of association. J Intern Med 243:381–388

    Article  PubMed  CAS  Google Scholar 

  42. Zittermann A, Scheld K, Stehle P (1998) Seasonal variations in vitamin D status and calcium absorption do not influence bone turnover in young women. Eur J Clin Nutr 52:501–506

    Article  PubMed  CAS  Google Scholar 

  43. Aksnes L, Aarskog D (1982) Plasma concentrations of vitamin D metabolites in puberty: effect of sexual maturation and implications for growth. J Clin Endocrinol Metab 55:94–101

    Article  PubMed  CAS  Google Scholar 

  44. Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R (2000) Calcium accretion in girls and boys during puberty: a longitudinal study. J Bone Miner Res 15:2245–2250

    PubMed  CAS  Google Scholar 

  45. Mora S, Pitukcheewanont P, Kaufman FR, Nelson JC, Gilsanz V (1999) Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J Bone Miner Res 14:664–667

    Google Scholar 

  46. Seydewitz HH, Henschen M, Kuhne W, Brandis M (2001) Pediatric reference ranges for osteocalcin measured by the immulite analyser. Clin Chem Lab Med 39:980–982

    Article  PubMed  CAS  Google Scholar 

  47. Price PA, Baukol SA (1980) 1,25-dihydroxyvitamin D3 increased synthesis of the vitamin K-dependent bone GLA protein by osteosarcoma cells. J Biol Chem 255:11660–11665

    PubMed  CAS  Google Scholar 

  48. Matkovic V (1991) Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am J Clin Nutr 54:2455–2465

    Google Scholar 

  49. Guillemant J, Cabrol S, Allemandou A, Peres G, Guillemant S (1995) Vitamin D-dependent seasonal variation of PTH in growing male adolescents. Bone 17:513–516

    Article  PubMed  CAS  Google Scholar 

  50. Chapuy M-C, Preziosi P, Maamer M, Arnaud S, Galan P, Hercberg S, Meunier PJ (1997). Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 7:439–443

    Article  PubMed  CAS  Google Scholar 

  51. Dawson-Hughes B, Harris SS, Dallal GE (1997) Plasma calcidiol, season, and serum parathyroid hormone concentrations in healthy elderly men and women. Am J Clin Nutr 65:67–71

    PubMed  CAS  Google Scholar 

  52. Heaney RP, Dowell MS, Halle CA, Bendich A (2003). Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 22:142–146

    PubMed  CAS  Google Scholar 

  53. DeLuca HF, Cantorna MP (2001). Vitamin D: its role and uses in immunology. FASEB J 15:2579–2585

    Article  PubMed  CAS  Google Scholar 

  54. Mathieu C, Waer M, Laureys J, Rutgeerts O, Bouillon R (1994) Prevention of autoimmune diabetes in NOD mice by 1,25-dihydroxyvitamin D3. Diabetologia 37:552–558

    Article  PubMed  CAS  Google Scholar 

  55. Cantorna MT, Hayes CE, DeLuca HF (1996). 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encepholomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA 93:7861–7864

    Article  PubMed  CAS  Google Scholar 

  56. Cantorna MT, Hayes CE, DeLuca HF (1998). 1,25-Dihydroxyvitamin D3 inhibits the progression of arthritis in murine models of human arthritis. J Nutr 128:68–72

    PubMed  CAS  Google Scholar 

  57. Hyppönen E, Läärä E, Reumanen A, Järvelin MR, Virtanen SM (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358:1500–1503

    PubMed  Google Scholar 

  58. Krause R, Buhring M, Hopfenmuller W, Holick MF, Sharma AM (1998) Ultraviolet B and blood pressure. Lancet 352:709–710

    Article  PubMed  CAS  Google Scholar 

  59. Holick MF (2003) Vitamin D: importance in the prevention of cancers, type I diabetes, heart disease, and osteoporosis. Am J Clin Nutr 79:362–371

    Google Scholar 

  60. Apperly FL (1941) The relation of solar radiation to cancer mortality in North America. Cancer Res 1:191–195

    Google Scholar 

  61. Rostand SG (1979) Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension 30:150–156

    Google Scholar 

  62. Garland CF, Garland FC, Shaw EK, Comstock GW, Helsing KJ, Gorham ED (1989) Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet 2:1176–1178

    PubMed  CAS  Google Scholar 

  63. Garland FC, Garland CF, Gorham ED, Young JF (1990) Geographic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation. Prev Med 19:614–622

    Article  PubMed  CAS  Google Scholar 

  64. Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P (2000) Prostate cancer risk and pre-diagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control 11:847–852

    Article  PubMed  CAS  Google Scholar 

  65. Grant WB (2002) An estimate of premature cancer mortality in the U.S. due to inadequate doses of solar ultraviolet-B radiation. Cancer 94:1867–1875

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Challa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapatsanis, D., Moulas, A., Cholevas, V. et al. Vitamin D: A Necessity for Children and Adolescents in Greece. Calcif Tissue Int 77, 348–355 (2005). https://doi.org/10.1007/s00223-004-0096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-004-0096-y

Keywords

Navigation