Skip to main content
Log in

Local spectral gap in simple Lie groups and applications

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We introduce a novel notion of local spectral gap for general, possibly infinite, measure preserving actions. We establish local spectral gap for the left translation action \(\Gamma \curvearrowright G\), whenever \(\Gamma \) is a dense subgroup generated by algebraic elements of an arbitrary connected simple Lie group G. This extends to the non-compact setting works of Bourgain and Gamburd (Invent Math 171:83–121, 2008; J Eur Math Soc (JEMS) 14:1455–1511, 2012), and Benoist and de Saxcé (Invent Math 205:337–361, 2016). We present several applications to the Banach–Ruziewicz problem, orbit equivalence rigidity, continuous and monotone expanders, and bounded random walks on G. In particular, we prove that, up to a multiplicative constant, the Haar measure is the unique \(\Gamma \)-invariant finitely additive measure defined on all bounded measurable subsets of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abért, M., Elek, G.: Dynamical properties of profinite actions. Ergodic Theory Dyn. Syst. 32, 1805–1835 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abért, M., Jaikin-Zapirain, A., Nikolov, N.: The rank gradient from a combinatorial viewpoint. Groups Geom. Dyn. 5, 213–230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babai, L., Nikolov, N., Pyber, L.: Product growth and mixing in finite groups. In: 19th ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 248–257 (2008)

  4. Banach, S.: Sur le problème de la mesure. Fund. Math. 4, 7–33 (1923)

    MATH  Google Scholar 

  5. Bekka, M., de la Harpe, P., Valette, A.: Kazhdan’s property (T), New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge, xiv+472 pp (2008)

  6. Benoist, Y., de Saxcè, N.: A spectral gap theorem in simple Lie groups. Invent. Math. 205, 337–361 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: Expanders and dimensional expansion. Comptes Rendus Mathematique 347, 357–362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain, J., Gamburd, A.: Uniform expansion bounds for Cayley graphs of \(SL_{2}({\mathbb{F}}_{p})\). Ann. Math. (2) 167, 625–642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J., Gamburd, A.: On the spectral gap for finitely-generated subgroups of \(SU(2)\). Invent. Math. 171, 83–121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain, J., Gamburd, A.: A spectral gap theorem in \(SU(d)\). J. Eur. Math. Soc. (JEMS) 14, 1455–1511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgain, J., Yehudayoff, A.: Expansion in \(SL_2({\mathbb{R}})\) and monotone expanders. Geom. Funct. Anal. 23, 1–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Breuillard, E.: A strong Tits alternative (preprint). arXiv:0804.1395

  13. Breuillard, E., Gelander, T.: On dense free subgroups of Lie groups. J. Algebra 261, 448–467 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Breuillard, E., Gelander, T.: A topological Tits alternative. Ann. Math. 166, 427–474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Connes, A., Feldman, J., Weiss, B.: An amenable equivalence relations is generated by a single transformation. Ergodic Theory Dyn. Syst. 1, 431–450 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Connes, A., Weiss, B.: Property T and asymptotically invariant sequences. Israel J. Math. 37, 209–210 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Cornulier, Y., de la Harpe: Metric geometry of locally compact groups, book in progress (preprint). arXiv:1403.3796

  18. Drinfeld, V.: Finitely-additive measures on \(S^2\) and \(S^3\), invariant with respect to rotations. Funct. Anal. Appl. 18, 245–246 (1984)

    Article  MathSciNet  Google Scholar 

  19. Eskin, A., Mozes, S., Oh, H.: On Uniform exponential growth for linear groups. Invent. Math. 160, 1–30 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Furman, A.: A survey of Measured Group Theory, Geometry, Rigidity, and Group Actions, 296–374. The University of Chicago Press, Chicago (2011)

    Google Scholar 

  21. Furman, A., Shalom, Y.: Sharp ergodic theorems for group actions and strong ergodicity. Ergodic Theory Dyn. Syst. 19(4), 1037–1061 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gaboriau, D.: Orbit equivalence and measured group theory. In: Proceedings of the ICM (Hyderabad, India, 2010), vol. III. Hindustan Book Agency, pp. 1501–1527 (2010)

  23. Gamburd, A., Jakobson, D., Sarnak, P.: Spectra of elements in the group ring of \(SU(2)\). J. Eur. Math. Soc. (JEMS) 1, 51–85 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grabowski, Ł., Máthe, A., Pikhurko, O.: Measurable equidecompositions for group actions with an expansion property (preprint). arXiv:1601.02958

  25. Helfgott, H.: Growth and generation in \(SL_2({\mathbb{Z}}/p{\mathbb{Z}})\). Ann. Math. 167, 601–623 (2008)

    Article  MathSciNet  Google Scholar 

  26. Houdayer, C., Vaes, S.: Type III factors with unique Cartan decomposition. J. Math. Pures Appl. 100, 564–590 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ioana, A.: Orbit equivalence and Borel reducibility rigidity for profinite actions with spectral gap J. Eur. Math. Soc. (JEMS) (preprint, to appear). arXiv:1309.3026

  28. Ioana, A.: Strong ergodicity, property (T), and orbit equivalence rigidity for translation actions. J. Reine Angew. Math. (preprint, to appear) arXiv:1406.6628

  29. del Junco, A., Rosenblatt, J.: Counterexamples in ergodic theory and number theory. Math. Ann. 245, 185–197 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kesten, H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92, 336–354 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  31. Knapp, A.W., Stein, E.M.: Interwining operators for semisimple groups. Ann. Math. 93, 489–578 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lindenstrauss, E., de Saxcé, N.: Hausdorff dimension and subgroups of \(SU(2)\). Israel J. Math. 209, 335–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lubotzky, A.: Discrete Groups, Expanding Graphs and Invariant Measures. With an appendix by Jonathan D. Rogawski, Progress in Mathematics, vol. 125. Birkhäuser Verlag, Basel, xii+195 pp (1994)

  34. Lubotzky, A., Mozes, S., Raghunathan, M.S.: The word and Riemannian metrics on lattices of semisimple groups. Inst. Hautes Études Sci. Publ. Math. 91, 5–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lubotzky, A., Phillips, R., Sarnak, P.: Hecke operators and distributing points on the sphere I. Commun. Pure Appl. Math. 39, 149–186 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lubotzky, A., Phillips, R., Sarnak, P.: Hecke operators and distributing points on \(S^2\) II. Commun. Pure Appl. Math. 40, 401–420 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Margulis, G.: Some remarks on invariant means. Monatsh. Math. 90, 233–235 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  38. Margulis, G.: Finitely-additive invariant measures on Euclidian spaces. Ergodic Theory Dyn. Syst. 2, 383–396 (1982)

    Article  MATH  Google Scholar 

  39. Masser, D.W., Wüstholz, G.: Fields of large transcendence degree generated by values of elliptic functions. Invent. Math. 72(3), 407–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Montgomery, D., Zippin, L.: Topological Transformation Groups. Interscience Publishers, New York, xi+282 pp (1955)

  41. Oh, H.: The Ruziewicz problem and distributing points on homogeneous spaces of a compact Lie group. Israel J. Math. (Furstenberg volume) 149, 301–316 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ozawa, N., Popa, S.: On a class of II\(_1\) factors with at most one Cartan subalgebra. Ann. Math. (2) 172, 713–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ornstein, D., Weiss, B.: Ergodic theory of amenable groups. I. The Rokhlin lemma. Bull. Am. Math. Soc. (N.S.) 1, 161–164 (1980)

    Article  MATH  Google Scholar 

  44. Popa, S.: Deformation and rigidity for group actions and von Neumann algebras, In Proceedings of the ICM (Madrid, 2006), vol. I, pp. 445–477. European Mathematical Society Publishing House (2007)

  45. Popa, S., Vaes, S.: Unique Cartan decomposition for II\(_1\) factors arising from arbitrary actions of free groups. Acta Math. 212(1), 141–198 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Raghunathan, M.S.: Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer, New York, ix+227 pp (1972)

  47. Ricci, F., Stein, E.: Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on sub manifolds. J. Funct. Anal. 78, 56–84 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rosenblatt, J.: Uniqueness of invariant means for measure-preserving transformations. Trans. Am. Math. Soc. 265 (1981)

  49. Salehi Golsefidy, A., Varjú, P.: Expansion in perfect groups. Geom. Funct. Anal 22(6), 1832–1891 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sarnak, P., Xue, X.: Bounds for multiplicities of automorphic representations. Duke Math. J. 64, 207–227 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  51. de Saxcé, N.: A product theorem in simple Lie groups. Geom. Funct. Anal. 25(3), 915–941 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Schmidt, K.: Asymptotically invariant sequences and an action of \(SL(2;{\mathbb{Z}})\) on the \(2\)-sphere. Israel J. Math. 37, 193–208 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schmidt, K.: Amenability. Kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions. Ergodic Theory Dyn. Syst. 1, 223–236 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stein, E.: Harmonic Analysis: Real-variable Methods. Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)

  55. Sullivan, D.: For \(n>3\) there is only one finitely additive rotationally invariant measure on the \(n\)-sphere on all Lebesgue measurable sets. Bull. Am. Math. Soc. 4, 121–123 (1981)

    Article  MATH  Google Scholar 

  56. Varjú, P.: Expansion in \(SL_d({\cal{O}}_K/I)\), \(I\) square-free. J. Eur. Math. Soc. (JEMS) 14, 273–305 (2012)

  57. Tao, T.: Product set estimates for non-commutative groups. Combinatorica 28(5), 547–594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tao, T.: Expansion in finite simple groups of Lie type, Graduate Studies in Mathematics, vol. 164. American Mathematical Society, Providence, xiv+303 pp (2015)

  59. Wagon, S.: The Banach-Tarski paradox. With a foreword by Jan Mycielski. Encyclopedia of Mathematics and its Applications, vol. 24. Cambridge University Press, Cambridge, xvi+251 pp (1985)

  60. Zimmer, R.J.: Amenable ergodic group actions and an application to Poisson boundaries of random walks. J. Funct. Anal. 27, 350–372 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Cyril Houdayer, Hee Oh and Peter Sarnak for helpful comments, Łukasz Grabowski for bringing [24] to our attention, and the referee for remarks that helped improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Ioana.

Additional information

R. Boutonnet was partially supported by NSF Grant DMS #1161047, NSF Career Grant DMS #1253402 and ANR Grant NEUMANN. A. Ioana was supported in part by NSF Grant DMS #1161047, NSF Career Grant DMS #1253402 and a Sloan Foundation Fellowship. A. S. Golsefidy was partially supported by NSF Grant DMS #1303121, and a Sloan Foundation Fellowship.

Appendix A. Proof of Lemma 4.1

Appendix A. Proof of Lemma 4.1

Let G be a connected simple Lie group with trivial center and denote by \(\mathfrak {g}\) its Lie algebra. The goal of this appendix is to prove Lemma 4.1. To this end, by relying on results from [51, 57] and following closely the proof of [6, Lemma 2.5], we first prove the following \(\ell ^2\)-flattening lemma.

In order to do so, it will be more convenient to work with an invariant metric on G, rather than the \(\Vert .\Vert _2\)-metric used in the rest of the paper. We therefore fix an Euclidean structure on \(\mathfrak {g}\), and endow G with the corresponding left-invariant Riemannian metric, denoted by d.

For further reference, we note that there is a constant \(C>1\) such that

$$\begin{aligned}&C^{-1}\log (1+\Vert x^{-1}y-1\Vert _2)\nonumber \\&\quad \leqslant d(x,y)\leqslant C\log (1+\Vert x^{-1}y-1\Vert _2),\quad \text {for all }x,y\in G. \end{aligned}$$
(A.1)

Indeed, it suffices to show that \(C^{-1}\log (1+\Vert x-1\Vert _2)\leqslant d(x,1)\leqslant C\log (1+\Vert x-1\Vert _2)\), for \(x\in G\). This is clear if x belongs to a small enough neighborhood V of the identity. On the other hand, if \(x\not \in V\), then one can easily prove such an inequality by using the KAK decomposition of G (see [34, Section 3] for details).

Let \(\delta >0\). We denote by \(B(x,\delta )=\{y\in G|d(x,y)<\delta \}\) the open ball of radius \(\delta \) centered at \(x\in G\), and by \(A^{[\delta ]}=\cup _{x\in A}B(x,\delta )\) the \(\delta \) -neighborhood of a set \(A\subset G\), both with respect to the metric d. For a probability measure \(\mu \) on G, we denote \(\mu _{\delta }=\mu *Q_{\delta }\), where

$$\begin{aligned} Q_{\delta }=\frac{\mathbf{1}_{B(1,\delta )}}{|B(1,\delta )|}. \end{aligned}$$

Lemma A.1

(\(\ell ^2\)-flattening, [6]) Let G be a connected simple Lie group with trivial center. Given \(\alpha ,\kappa >0\), there exists \(\varepsilon >0\) such that the following holds for any \(\delta >0\) small enough:

Suppose that \(\mu \) is a symmetric Borel probability measure on G such that

  1. (1)

    supp\((\mu )\subset B(1,\varepsilon \log {\frac{1}{\delta }})\),

  2. (2)

    \(\Vert \mu _{\delta }\Vert _2\geqslant \delta ^{-\alpha }\), and

  3. (3)

    \((\mu *\mu )(H^{[\rho ]})\leqslant \delta ^{-\varepsilon }\rho ^{\kappa }\), for all \(\rho \geqslant \delta \) and an proper closed connected subgroup \(H<G\).

Then \(\Vert \mu _{\delta }*\mu _{\delta }\Vert _2\leqslant \delta ^{\varepsilon }\Vert \mu _{\delta }\Vert _2.\)

Notation. We use the notation \(O(\varepsilon )\) to denote a positive quantity which is bounded by \(C\varepsilon \), for some constant \(C>0\) depending only on G. We also use the notation \(\phi \ll \psi \) for functions \(\phi ,\psi :(0,\infty )\rightarrow (0,\infty )\) to mean the existence of a constant C depending only on G such that \(\phi (\delta )\leqslant C\psi (\delta )\), for any small enough \(\delta >0\). If \(\phi \ll \psi \) and \(\psi \ll \phi \), we write \(\phi \simeq \psi \).

1.1 A.1 Ingredients of the proof of Lemma A.1

The proof of Lemma A.1 relies on Bourgain and Gamburd’s strategy [8, 9]. In order to implement this strategy, we use de Saxcé’s product theorem [51, Theorem 3.9]. Recall that if A is a subset of G and \(\delta >0\), then \(N(A,\delta )\) denotes the least number of open balls of radius \(\delta \) needed to cover A.

Theorem A.2

(product theorem, [51]) Let G be a simple Lie group of dimension d. Then there exists a neighborhood U of the identity in G such that the following holds.

Given \(\alpha \in (0,d)\) and \(\kappa >0\), there exist \(\varepsilon _0=\varepsilon _0(\alpha ,\kappa )\) and \(\tau =\tau (\alpha ,\kappa )>0\) such that, for any \(\delta >0\) small enough, if \(A\subset U\) is a set satisfying

  1. (1)

    \(N(A,\delta )\leqslant \delta ^{-d+\alpha -\varepsilon _0}\),

  2. (2)

    \(N(A,\rho )\geqslant \rho ^{-\kappa }\delta ^{\varepsilon _0}\), for all \(\rho \geqslant \delta \), and

  3. (3)

    \(N(AAA,\delta )\leqslant \delta ^{-\varepsilon _0}N(A,\delta )\),

then A is contained in a neighborhood of size \(\delta ^{\tau }\) of a proper closed connected subgroup of G.

To prove Lemma A.1, we will also need Tao’s non-commutative Balog–Szemerédi–Gowers Lemma [57, Theorem 6.10]. If AB are subsets of a metric group G and \(\delta >0\), then the \(\delta \)-multiplicative energy \(E_{\delta }(A,B)\) is defined as \(E_{\delta }(A,B)=N(\{(a,b,a',b')\in A\times B\times A\times B\;|\; d(ab,a'b')\leqslant \delta \},\delta ).\) The following inequality will be used in the proof of Lemma A.1

$$\begin{aligned} E_{\delta }(A,B)\gg \delta ^{-3d}\Vert 1_A*1_B\Vert _2^2. \end{aligned}$$

Indeed, define \(f:A\times B\times A\rightarrow G\) by \(f(a,b,a')=a'^{-1}ab\), \(S=\{(a,b,a')\in A\times B\times A|f(a,b,a')\in B\}\), and \(T=\{(a,b,a',b')\in A\times B\times A\times B|d(b',f(a,b,a'))\leqslant \delta \}\). Then we have \(\Vert 1_A*1_B\Vert _2^2=|S|\) and \(\delta ^d|S|\ll |T|\ll \delta ^{4d}N(T,\delta )=\delta ^{4d}E_{\delta }(A,B),\) which together prove the desired inequality.

Recall that a subset \(H\subset G\) is called a K-approximative subgroup, for some \(K>1\), if it is symmetric and there is a symmetric set \(X\subset HH\) of cardinality at most K such that \(HH\subset XH\).

Theorem A.3

(non-commutative Balog–Szemerédi–Gowers lemma,[57]) Let G be a Lie group endowed with a left-invariant Riemannian metric. Then there exist constants \(c>0\) and \(R>0\) such that the following holds for any \(\delta \in (0,1)\) and \(K\geqslant 2\).

Suppose that AB are non-empty subsets of G contained in B(1, 1) such that

$$\begin{aligned} E_{\delta }(A,B)\geqslant \frac{1}{K}N(A,\delta )^{\frac{3}{2}}N(B,\delta )^{\frac{3}{2}}. \end{aligned}$$

Then there is a \(K^c\)-approximate subgroup H of G and elements \(x,y\in G\) such that

  • \(N(H,\delta )\leqslant K^c\;N(A,\delta )^{\frac{1}{2}}N(B,\delta )^{\frac{1}{2}}\),

  • \(N(xH\cap A,\delta )\geqslant K^{-c}N(A,\delta )\),

  • \(N(Hy\cap B,\delta )\geqslant K^{-c}N(B,\delta )\),

  • \(x,y\in B(1,R)\) and \(H\subset B(1,R)\).

A final ingredient in the proof of Lemma A.1 is an approximation of the measure \(\mu _{\delta }\) by dyadic level sets [32]. A family of sets \(\{A_i\}_{i\in I}\) is called essentially disjoint if there is a constant C such that the intersection of more than C distinct sets \(A_i\) is empty.

Lemma A.4

[32] Let \(\mu \) be a Borel probability measure on G. Let \(\delta \in (0,1)\) and \(\mathcal C\) be a maximal \(\delta \)-separated subset of G. Define \(\mathcal C_0=\{x\in \mathcal C|0<\mu _{2\delta }(x)\leqslant 1\}\) and \(\mathcal C_i=\{x\in \mathcal C|2^{i-1}<\mu _{2\delta }(x)\leqslant 2^{i}\}\), for \(i\geqslant 1\). For \(i\geqslant 0\), let \(A_i=\cup _{x\in \mathcal C_i}B(x,\delta )\). Then we have the following

  1. (1)

    at most \(O(1)\log {\frac{1}{\delta }}\) of the sets \(A_i\) are non-empty,

  2. (2)

    \(A_i\) is an essentially disjoint union of balls of radius \(\delta \), for all \(i\geqslant 0\),

  3. (3)

    \({\mu _{\delta }\ll \sum _{i\geqslant 0}2^i1_{A_i}}\) and \({\sum _{i>0}2^i1_{A_i}\ll \mu _{3\delta }}\).

Proof

These assertions follow from [32, Lemma 4.4], but for completeness, we include a proof. Since \(|\mu _{2\delta }(x)|\leqslant \frac{1}{|B(1,2\delta )|}\ll \delta ^{-d}\), for any \(x\in G\), (1) is immediate. Note that the balls \(\{B(x,\delta )\}_{x\in \mathcal C}\) cover G, while the balls \(\{B(x,\frac{\delta }{2})\}_{x\in \mathcal C}\) are disjoint. Since a ball of radius \(3\delta \) can contain at most O(1) disjoint balls of radius \(\frac{\delta }{2}\), the balls \(\{B(x,\delta )\}_{x\in \mathcal C}\) are essentially disjoint. This implies (2).

To prove (3), let \(y\in G\). If \(x\in G\) is such that \(y\in B(x,\delta )\), then

$$\begin{aligned} \mu _{\delta }(y)=\frac{\mu (B(y,\delta ))}{|B(1,\delta )|}\leqslant \frac{\mu (B(x,2\delta ))}{|B(1,\delta )|}\ll \frac{\mu (B(x,2\delta ))}{|B(1,2\delta )|}=\mu _{2\delta }(x), \end{aligned}$$

and similarly \(\mu _{2\delta }(x)\ll \mu _{3\delta }(y).\) Assuming \(\mu _{\delta }(y)>0\), let \(x\in \mathcal C\) with \(y\in B(x,\delta )\). Then \(\mu _{2\delta }(x)>0\), hence \(x\in \mathcal C_i\) and \(y\in A_i\), for some \(i\geqslant 0\). This implies that \(\mu _{\delta }(y)\ll \mu _{2\delta }(x)1_{A_i}(y)\leqslant 2^i1_{A_i}(y).\)

On the other hand, if \(y\in A_i\), for \(i>0\), then there is \(x\in \mathcal C\) such that \(y\in B(x,\delta )\) and \(\mu _{2\delta }(x)>2^{i-1}\). Hence, \(2^i1_{A_i}(y)=2^i<2\mu _{2\delta }(x)\ll \mu _{3\delta }(y)\). Since the balls \(\{B(x,\delta )\}_{x\in \mathcal C}\) are essentially disjoint, y belongs to O(1) of the sets \(\{A_i\}_{i>0}\) and it follows that \(\sum _{i>0}2^i1_{A_i}(y)\ll \mu _{3\delta }(y).\) This proves (3).   \(\square \)

Lemma A.5

Let \(a>0\) and \(\mu \) be a Borel probability measure on G.

Then \({\sup _{\delta<\delta '<1}\Vert \mu _{\delta '}\Vert _2\ll \Vert \mu _{\delta }\Vert _2}\) and \(\Vert \mu _{\delta }\Vert _2\simeq \Vert \mu _{a\delta }\Vert _2\).

Proof

Let \(1>\delta '>\delta >0\). Then \( |B(1,\delta )| 1_{B(1,\delta ')}\leqslant 1_{B(1,\delta )}*1_{B(1,\delta +\delta ')}\) and thus

$$\begin{aligned} Q_{\delta '}\leqslant \frac{|B(1,\delta +\delta ')|}{|B(1,\delta ')|}\;Q_{\delta }*Q_{\delta +\delta '}\ll Q_{\delta }*Q_{\delta +\delta '}. \end{aligned}$$

We further get that \(\Vert \mu *Q_{\delta '}\Vert _2\ll \Vert (\mu *Q_{\delta })*Q_{\delta +\delta '}\Vert _2\leqslant \Vert \mu *Q_{\delta }\Vert _2\), thus proving the first inequality. To prove the second inequality we may assume \(a>1\). Then for any \(x\in G\) we have

$$\begin{aligned} \mu _{a\delta }(x)=\frac{\mu (B(x,a\delta ))}{|B(1,a\delta )|}\geqslant \frac{|B(1,\delta )|}{|B(1,a\delta )|}\;\frac{\mu (B(x,\delta ))}{|B(1,\delta )|}\gg \mu _{\delta }(x). \end{aligned}$$

Thus, \(\Vert \mu _{a\delta }\Vert _2\gg \Vert \mu _{\delta }\Vert _2\). Since \(\Vert \mu _{a\delta }\Vert _2\ll \Vert \mu _{\delta }\Vert _2\) by the above, we are done. \(\square \)

1.2 A.2 Proof of Lemma A.1

Assume that \(\Vert \mu _{\delta }*\mu _{\delta }\Vert _2>\delta ^{\varepsilon }\Vert \mu _{\delta }\Vert _2\), for some \(\varepsilon >0\). Following closely the proof of [6, Lemma 2.5], we will reach a contradiction for any \(\varepsilon \) small enough.

Let U be the neighborhood of \(1\in G\) provided by Theorem A.2, and let \(0<r<1\) with \(B(1,r)\subset U\). Let R be the constant given by Theorem A.3, and \(\{A_i\}_{0\leqslant i\ll \log {\frac{1}{\delta }}}\) be the sets given by Lemma A.4. Let \(C>1\) the constant appearing in inequality (A.1). By using (A.1) one easily checks that

$$\begin{aligned} d(x^{-1},y^{-1})\leqslant Ce^{2Cd(x,1)}(e^{Cd(x,y)}-1),\quad \text {for any }x,y\in G. \end{aligned}$$
(A.2)

Assume that \(3C\varepsilon <1\). Let \(0\leqslant i\ll \log {\frac{1}{\delta }}\). Since supp\((\mu )\subset B(1,\varepsilon \log {\frac{1}{\delta }})\), we get that \(A_i\) is contained in \(B(1,\varepsilon \log {\frac{1}{\delta }}+3\delta )\). Since \(|B(1,\varepsilon \log {\frac{1}{\delta }}+3\delta )|=\delta ^{-O(\varepsilon )}\) and \(|B(1,\frac{\delta ^{3C\varepsilon }}{8})|=\delta ^{O(\varepsilon )}\), \(A_i\) can be covered by at most \(\delta ^{-O(\varepsilon )}\) sets of diameter at most \(\frac{\delta ^{3C\varepsilon }}{2}\). Since \(A_i\) is a union of balls of radius \(\delta \), and \(\delta \leqslant \frac{\delta ^{3C\varepsilon }}{2}\), for \(\delta \) small enough, we can decompose \(A_i=\cup _{k=1}^{\delta ^{-O(\varepsilon )}}A_{i,k},\) where each set \(A_{i,k}\) is the union of some of the balls of radius \(\delta \) that make up \(A_i\), and has diameter at most \(\delta ^{3C\varepsilon }\). Moreover, by (A.2) the diameter of \(A_{i,k}^{-1}\) is at most \(Ce^{2C(\varepsilon \log {\frac{1}{\delta }}+3\delta )}(e^{C\delta ^{3C\varepsilon }}-1)\simeq {\delta }^{C\varepsilon }\). Thus, for \(\delta \) small enough, \(A_{i,k}\) has diameter at most \(\min \{1,r\}\) and \(A_{i,k}^{-1}\) has diameter at most 1, for all k.

Before continuing, let us also note that

$$\begin{aligned} \delta ^{O(\varepsilon )}N(A,\delta )\leqslant N(Ah,\delta )\leqslant \delta ^{-O(\varepsilon )}N(A,\delta ), \end{aligned}$$
(A.3)

for every set \(A\subset B(1,\varepsilon \log {\frac{1}{\delta }}+3\delta )\) and any \(h\in B(1,\varepsilon \log {\frac{1}{\delta }}+3\delta +1)\). Indeed, by using (A.2) it is immediate that \(B(1,\delta ^{1+O(\varepsilon )})\subset h^{-1}B(1,\delta )h\subset B(1,\delta ^{1-O(\varepsilon )})\), which easily implies (A.3).

Since \({\mu _{\delta }\ll \sum _{i}2^i1_{A_i}\leqslant \sum _{i,k} 2^i1_{A_{i,k}}}\), we get that

$$\begin{aligned} \delta ^{\varepsilon }\Vert \mu _{\delta }\Vert _2\leqslant \Vert \mu _{\delta }*\mu _{\delta }\Vert _2\leqslant \underset{1\leqslant k,l\leqslant \delta ^{-O(\varepsilon )}}{\sum _{0\leqslant i,j\ll \log {\frac{1}{\delta }}}}\Vert 2^i1_{A_{i,k}}*2^j1_{A_{j,l}}\Vert _2. \end{aligned}$$

Since the sum on the right contains \(\delta ^{-O(\varepsilon )}\) terms, we can find \(0\leqslant i,j\ll \log \frac{1}{\delta }\) and \(1\leqslant k,l\leqslant \delta ^{-O(\varepsilon )}\) such that if we denote \(A_i'=A_{i,k}\) and \(A_j'=A_{j,l}\), then

$$\begin{aligned} \Vert 2^i1_{A_i'}*2^j1_{A_j'}\Vert _2\geqslant \delta ^{O(\varepsilon )}\Vert \mu _{\delta }\Vert _2. \end{aligned}$$

We claim that \(i>0\). Note that \(\Vert 1_{A_0}\Vert _1=|A_0|\leqslant |B(1,\varepsilon \log {\frac{1}{\delta }}+3\delta )|=\delta ^{-O(\varepsilon )}\) and \(\Vert 1_{A_0}\Vert _2=\delta ^{-O(\varepsilon )}\). Moreover, if \(j>0\), then \(\Vert 2^j1_{A_j'}\Vert _1\leqslant \Vert 2^j1_{A_j}\Vert _1\ll \Vert \mu _{3\delta }\Vert _1=1\) (by Lemma A.4). Young’s inequality gives that \(\Vert 1_{A_0}*2^j1_{A_j'}\Vert _2\leqslant \Vert 1_{A_0}\Vert _2\Vert 2^j1_{A_j'}\Vert _1\leqslant \delta ^{-O(\varepsilon )}\), for any \(j\geqslant 0\). Since \(\delta ^{O(\varepsilon )}\Vert \mu _{\delta }\Vert _2\geqslant \delta ^{O(\varepsilon )-\alpha }\), we cannot have \(i=0\), provided \(\varepsilon >0\) is small enough. Similarly, we must have that \(j>0\).

Since \(\Vert 2^{j}1_{A_j'}\Vert _2\leqslant \Vert 2^j1_{A_j}\Vert _2\ll \Vert \mu _{3\delta }\Vert _2\simeq \Vert \mu _{\delta }\Vert _2\) (by Lemma A.5), Young’s inequality gives that

$$\begin{aligned} \delta ^{O(\varepsilon )}\Vert \mu _{\delta }\Vert _2\leqslant \Vert 2^i1_{A_i'}*2^j1_{A_j'}\Vert _2\leqslant \Vert 2^i1_{A_i'}\Vert _1\Vert 2^j1_{A_j'}\Vert _2\leqslant 2^i|A_i'\Vert \mu _{\delta }\Vert _2. \end{aligned}$$

This implies that

$$\begin{aligned} 2^i|A_i'|=\delta ^{O(\varepsilon )}\quad \text {and similarly}\quad 2^j|A_j'|=\delta ^{O(\varepsilon )}. \end{aligned}$$
(A.4)

Next, since \(2^i|A_i'|\leqslant 2^i|A_i|\ll \Vert \mu _{3\delta }\Vert _1=1\), we deduce that

$$\begin{aligned} \delta ^{O(\varepsilon )}\Vert \mu _{\delta }\Vert _2\leqslant \Vert 2^i1_{A_i'}*2^j1_{A_j'}\Vert _2&\leqslant \Vert 2^i1_{A_i'}\Vert _2\Vert 2^j1_{A_j'}\Vert _1\ll 2^i|A_i'|^{\frac{1}{2}}\leqslant |A_i'|^{-\frac{1}{2}}. \end{aligned}$$

Using that \(\Vert \mu _{\delta }\Vert _2\geqslant \delta ^{-\alpha }\), it follows that \(|A_i'|\leqslant \delta ^{\frac{\alpha }{2}-O(\varepsilon )}.\) Since \(A_i'\) is an essentially disjoint union of balls of radius \(\delta \), we have \(|A_i'|\simeq \delta ^dN(A_i',\delta )\). Altogether, we deduce that

$$\begin{aligned} N(A_i',\delta )\leqslant \delta ^{-d+\frac{\alpha }{2}-O(\varepsilon )}\quad \text {and similarly}\quad N(A_j',\delta )\leqslant \delta ^{-d+\frac{\alpha }{2}-O(\varepsilon )}. \end{aligned}$$
(A.5)

By combining the inequalities \(2^i|A_i'|^{\frac{1}{2}}=\Vert 2^i1_{A_i'}\Vert _2\leqslant \Vert \mu _{3\delta }\Vert _2\simeq \Vert \mu _{\delta }\Vert _2\) and \(2^i|A_i'|\ll 1\) with the fact that \(|A_i'|\simeq \delta ^{d}N(A_i',\delta )\), we derive that

$$\begin{aligned} \Vert 1_{A_i'}*1_{A_j'}\Vert _2^2 \geqslant \delta ^{O(\varepsilon )}2^{-2i-2j}\Vert \mu _{\delta }\Vert _2^2&\geqslant \delta ^{O(\varepsilon )}2^{-i-j}|A_i'|^{\frac{1}{2}}|A_j'|^{\frac{1}{2}}\\ {}&=\delta ^{O(\varepsilon )}(2^i|A_i'|)^{-1}|A_i'|^{\frac{3}{2}}(2^{j}A_j')^{-1}|A_j'|^{\frac{3}{2}}\\ {}&\geqslant \delta ^{3d+O(\varepsilon )}N(A_i',\delta )^{\frac{3}{2}}N(A_j',\delta )^{\frac{3}{2}}. \end{aligned}$$

Since \(A_i'\) and \({A_j'}^{-1}\) have diameters at most 1, we can find \(g,h\in B(1,\varepsilon \log {\frac{1}{\delta }}+3\delta +1)\) such that \(gA_i'\subset B(1,1)\) and \(A_j'h\subset B(1,1)\). On the other hand, combining the last inequality with A.3 yields

$$\begin{aligned} E_{\delta }(gA_i',A_j'h)\gg \delta ^{-3d}\Vert 1_{gA_i'}*1_{A_j'h}\Vert _2^2&=\delta ^{-3d}\Vert 1_{A_i'}*1_{A_j'}\Vert _2^2\\&\geqslant \delta ^{O(\varepsilon )}N(A_i',\delta )^{\frac{3}{2}}N(A_j',\delta )^{\frac{3}{2}}\\&\geqslant \delta ^{O(\varepsilon )}N(gA_i',\delta )^{\frac{3}{2}}N(A_j'h,\delta )^{\frac{3}{2}} \end{aligned}$$

By applying Theorem A.3 to \(gA_i'\) and \(A_j'h\), we deduce the existence of a \(\delta ^{-O(\varepsilon )}\)-approximate subgroup \(H\subset B(1,R)\) and elements \(z,t\in B(1,R)\) such that \(N(H,\delta )\leqslant \delta ^{-O(\varepsilon )}N(gA_i',\delta )^{\frac{1}{2}}N(A_j'h,\delta )^{\frac{1}{2}}\), \(N(zH\cap gA_i',\delta )\geqslant \delta ^{O(\varepsilon )}N(gA_i',\delta )\) and \(N(Ht\cap A_j'h,\delta )\geqslant \delta ^{O(\varepsilon )}N(A_j'h,\delta )\). Let \(v=g^{-1}z\) and \(w=th^{-1}\). By using (A.3) we further get that

$$\begin{aligned} N(H,\delta )\leqslant & {} \delta ^{-O(\varepsilon )}N(A_i',\delta )^{\frac{1}{2}}N(A_j',\delta )^{\frac{1}{2}}, \end{aligned}$$
(A.6)
$$\begin{aligned} N(vH\cap A_i',\delta )\geqslant & {} \delta ^{O(\varepsilon )}N(A_i',\delta )\quad \text {and}\quad N(Hw\cap A_j',\delta )\geqslant \delta ^{O(\varepsilon )}N(A_j',\delta ).\nonumber \\ \end{aligned}$$
(A.7)

The next claim allows us to replace H with its \(4\delta \)-neighborhood:

Claim. \(\tilde{H}:=H^{[4\delta ]}\) satisfies the following:

  1. (1)

    \(\mu _{\delta }(v\tilde{H}\cap A_i')\geqslant \delta ^{O(\varepsilon )}\).

  2. (2)

    \(N(\tilde{H}^2,\delta )\leqslant N(\tilde{H}^6,\delta )\leqslant \delta ^{-O(\varepsilon )}N(\tilde{H},\delta ).\)

Proof of the claim

(1) Recall that there is a subset \(\mathcal C_i'\subset \mathcal C_i\) such that \(A_i'=\cup _{x\in \mathcal C_i'}B(x,\delta )\). Since \(N(vH\cap A_i',\delta )\geqslant \delta ^{O(\varepsilon )}N(A_i',\delta )\) by (A.7), we get that vH intersects at least \(\delta ^{O(\varepsilon )}N(A_i',\delta )\) of the balls \(\{B(x,\delta )\}_{x\in \mathcal C_i'}\). Thus, \(v\tilde{H}\cap A_i'=(vH)^{[4\delta ]}\cap A_i'\) contains at least \(\delta ^{O(\varepsilon )}N(A_i',\delta )\) of the balls \(\{B(x,3\delta )\}_{x\in \mathcal C_i'}\). Since the balls \(\{B(x,\delta )\}_{x\in \mathcal C_i'}\) and hence the balls \(\{B(x,3\delta )\}_{x\in \mathcal C_i'}\) are essentially disjoint, \(v\tilde{H}\cap A_i'\) must contain at least \(\delta ^{O(\varepsilon )}N(A_i',\delta )\) disjoint balls from the collection \(\{B(x,3\delta )\}_{x\in \mathcal C_i'}\).

On the other hand, for every \(x\in \mathcal C_i\) we have that \(\mu _{2\delta }(x)>2^{i-1}\) and hence

$$\begin{aligned} \mu _{\delta }(B(x,3\delta ))\geqslant \mu (B(x,2\delta ))=|B(1,2\delta )|\mu _{2\delta }(x)\gg \delta ^d2^i. \end{aligned}$$

Since \(\delta ^dN(A_i',\delta )\simeq |A_i'|\), and \(2^i|A_i'|=\delta ^{O(\varepsilon )}\) by A.4, we finally derive that

$$\begin{aligned} \mu _{\delta }(v\tilde{H}\cap A_i)\geqslant \delta ^{O(\varepsilon )}N(A_i',\delta )\delta ^d2^i\simeq \delta ^{O(\varepsilon )}2^i|A_i'|=\delta ^{O(\varepsilon )}. \end{aligned}$$

(2) Let \(X\subset G\) be a set of cardinality \(\delta ^{-O(\varepsilon )}\) such that \(HH\subset HX\). Since \(H\subset B(1,R)\) and R is an absolute constant, by using (A.2) it follows that \(\tilde{H}\tilde{H}\subset (HH)^{[O(1)\delta ]}\), and thus \(\tilde{H}\tilde{H}\subset H^{[D\delta ]}X\), for some constant \(D>1\). Let \(S\subset H\) be a maximal set such that the balls \(\{B(x,\delta )\}_{x\in S}\) are disjoint. Then \(\cup _{x\in S}B(x,\delta )\subset H^{[\delta ]}\) and \(H\subset \cup _{x\in S}B(x,2\delta )\), therefore \(H^{[D\delta ]}\subset \cup _{x\in S}B(x,(D+2)\delta )\). Let Y be a set of cardinality O(1) with \(B(1,(D+2)\delta )\subset B(1,\delta )Y\). Then \(B(x,(D+2)\delta )\subset B(x,\delta )Y\), for any \(x\in G\), implying that \(H^{[D\delta ]}\subset H^{[\delta ]}Y\). Altogether, we get that \(\tilde{H}\tilde{H}\subset H^{[\delta ]}Z\subset \tilde{H}Z\), where \(Z=YX\). Since \(\tilde{H}\) is symmetric, we have \(\tilde{H}\tilde{H}\subset Z^{-1}\tilde{H}\). Since the cardinality of Z is \(\delta ^{-O(\varepsilon )}\), (2) follows. \(\square \)

Let us show that for \(\varepsilon >0\) small enough, the set \(\tilde{H}^2\cap U\) satisfies the assumptions of Theorem A.2. Firstly, using (2) above in combination with (A.5) and (A.6) we get that

$$\begin{aligned} N(\tilde{H}^2\cap U,\delta )\leqslant N(\tilde{H}^2,\delta )\leqslant \delta ^{-d+\frac{\alpha }{2}-O(\varepsilon )}. \end{aligned}$$
(A.8)

Secondly, since \(A_i'\) has diameter at most r, we get that \({A_i'}^{-1}{A_i'}\subset B(1,r)\subset U\). This implies that \((v\tilde{H}\cap A_i')^{-1}(v\tilde{H}\cap A_i')\subset \tilde{H}^2\cap U\). In combination with (1) from the claim, it follows that

$$\begin{aligned} \check{\mu }_{\delta }*\mu _{\delta }(\tilde{H}^2\cap U)\geqslant \check{\mu }_{\delta }((v\tilde{H}\cap A_i')^{-1})\mu _{\delta }(v\tilde{H}\cap A_i')=\mu _{\delta }(v\tilde{H}\cap A_i')^2\geqslant \delta ^{O(\varepsilon )}. \end{aligned}$$
(A.9)

Let \(1\geqslant \rho \geqslant \delta \) and \(x\in G\) such that \(B(x,\rho )\cap U\not =\emptyset \). Then \(B(1,\delta )B(x,\rho )B(1,\delta )\subset B(x,\rho +O(1)\delta )\). Since \(B(x,\rho +O(1)\delta )\) is contained in the \((\rho +O(1)\delta )\)-neighborhood of a proper closed connected subgroup of G, the hypothesis implies that \(\mu *\mu (B(x,\rho +O(1)\delta ))\ll \delta ^{-\varepsilon }\rho ^{\kappa }\). By using the fact that \(\mu \) and \(Q_{\delta }\) are symmetric, we get that

$$\begin{aligned} \check{\mu }_{\delta }*\mu _{\delta }(B(x,\rho ))&=(Q_{\delta }*\mu *\mu *Q_{\delta })(B(x,\rho ))\\&\leqslant \mu *\mu (B(1,\delta )B(x,\rho )B(1,\delta ))\ll \delta ^{-\varepsilon }\rho ^{\kappa }. \end{aligned}$$

Since this holds for any ball of radius \(\rho \) that intersects U, in combination with (A.9) it gives that

$$\begin{aligned} N(\tilde{H}^2\cap U,\rho )\geqslant \delta ^{O(\varepsilon )}\rho ^{-\kappa },\quad \text {for all }1\geqslant \rho \geqslant \delta . \end{aligned}$$
(A.10)

Thirdly, let \(C\subset \tilde{H}\) be a set of diameter at most r and fix \(x\in C\). Since \(B(1,r)\subset U\), we get that \(x^{-1}C\subset C^{-1}C\subset \tilde{H}^2\cap U\). Thus, \(N(C,\delta )=N(x^{-1}C,\delta )\leqslant N(\tilde{H}^2\cap U,\delta )\). On the other hand, since \(H\subset B(1,R)\), we can cover \(\tilde{H}\) by O(1) sets of diameter at most r. Altogether, we conclude that \(N(\tilde{H},\delta )\ll N(\tilde{H}^2\cap U,\delta )\). Using (2), it follows that

$$\begin{aligned} N((\tilde{H}^2\cap U)^3,\delta )\leqslant N(\tilde{H}^6,\delta )\leqslant \delta ^{-O(\varepsilon )}N(\tilde{H},\delta )\leqslant \delta ^{-O(\varepsilon )}N(\tilde{H}^2\cap U,\delta ).\nonumber \\ \end{aligned}$$
(A.11)

Equations (A.8), (A.10), (A.11) together guarantee that we are in position to apply Theorem A.2 to \(\tilde{H}^2\cap U\). Thus, there is a proper closed connected subgroup \(L<G\) such that \(\tilde{H}^2\cap U\subset L^{[\delta ^{\tau }]}\). On the other hand, by using (A.9) and reasoning similarly to the above we conclude that

$$\begin{aligned} \delta ^{O(\varepsilon )}\leqslant & {} \check{\mu }_{\delta }*\mu _{\delta }(\tilde{H}^2\cap U)\leqslant \check{\mu }_{\delta }*\mu _{\delta }(L^{[\delta ^{\tau }]}\cap U)\\\leqslant & {} \mu *\mu (B(1,\delta )(L^{[\delta ^{\tau }]}\cap U)B(1,\delta ))\leqslant \mu *\mu (L^{[\delta ^{\tau }+O(1)\delta ]}). \end{aligned}$$

Since the hypothesis implies that \(\mu *\mu (L^{[\delta ^{\tau }+O(1)\delta ]})\leqslant \delta ^{-\varepsilon }(\delta ^{\tau }+O(1)\delta )^{\kappa }\), it is now clear that choosing \(\varepsilon >0\) small enough yields a contradiction. \(\square \)

1.3 A.3 Proof of Lemma 4.1

Let \(\alpha ,\kappa >0\). Let \(\varepsilon >0\) such that the conclusion of Lemma A.1 holds. Let \(\mu \) be a symmetric Borel probability measure on G. Then we have

  1. (a)

    \(\Vert \mu *P_{\delta }\Vert _2\simeq \Vert \mu *Q_{\delta }\Vert _2.\)

Moreover, assuming that supp\((\mu )\subset B_{\delta ^{-\beta }}(1)\), for some \(\beta >0\), we have that

  1. (b)

    \(\mu *Q_{\delta }\ll \delta ^{-O(\beta )}\;Q_{\delta ^{1-O(\beta )}}*\mu *Q_{\delta ^{1-O(\beta )}}\).

  2. (c)

    \(A^{[\rho ]}\cap \) supp\((\mu *\mu )\subset A^{(\delta ^{-O(\beta )}\rho )}\), for any set \(A\subset G\) and every \(1>\rho >\delta \).

Indeed, A.1 implies that \(B(1,\frac{\delta }{2C})\subset B_{\delta }(1)\subset B(1,C\delta )\), for small \(\delta >0\). This readily gives that

$$\begin{aligned} P_{\delta }=\frac{1_{B_{\delta }(1)}}{|B_{\delta }(1)|}\leqslant \frac{|B(1,C\delta )|}{|B(1,\frac{\delta }{2C})|} Q_{C\delta }\ll Q_{C\delta } \end{aligned}$$

and similarly \({Q_{\frac{\delta }{2C}}\ll P_{\delta }}.\) Therefore, \(\Vert \mu *Q_{\frac{\delta }{2C}}\Vert _2\ll \Vert \mu *P_{\delta }\Vert \ll \Vert \mu *Q_{C\delta }\Vert _2\). On the other hand, Lemma A.5 implies that \(\Vert \mu *Q_{\frac{\delta }{2C}}\Vert _2\simeq \Vert \mu *Q_{\delta }\Vert _2\simeq \Vert \mu *Q_{C\delta }\Vert _2\). This altogether proves (a).

By (A.1) we have that \(B_{\delta ^{-\beta }}(1)\subset B(1,2C\beta \log {\frac{1}{\delta }})\), hence \(\mu \) and \(\mu *\mu \) are supported on \(B(1,4C\beta \log {\frac{1}{\delta }})\). To prove (b), we may therefore assume that \(\mu =\delta _{x}\), for some \(x\in B(1,4C\beta \log {\frac{1}{\delta }})\). Using (A.2) we get that \(B(1,4C\beta \log {\frac{1}{\delta }})B(1,\delta )B(1,4C\beta \log {\frac{1}{\delta }})\subset B(1,\delta ^{1-O(\beta )})\), hence \(\delta _x*1_{B(1,\delta )}*\delta _{x^{-1}}\leqslant 1_{B(1,\delta ^{1-O(\beta )})}.\) Since \(|B(1,\delta ^{1-O(\beta )}|\ll \delta ^{-O(\beta )}|B(1,\delta )|\), this implies that \(\mu *Q_{\delta }\ll \delta ^{-O(\beta )}Q_{\delta ^{1-O(\beta )}}*\mu \). Similarly, we have that \(Q_{\delta }\ll \delta ^{-O(\beta )}Q_{\delta }*Q_{\delta ^{1-O(\beta )}}\), and combining the last two inequalities implies (b). Finally, (A.1) gives that \(\Vert x-y\Vert _2\leqslant \delta ^{-O(\beta )}\rho \), for any \(x\in G\) and \(y\in B(1,4C\beta \log {\frac{1}{\delta }})\) satisfying \(d(x,y)<\rho \). This clearly implies (c).

To finish the proof, assume that \(\mu \) additionally satisfies \(\Vert \mu *P_{\delta }\Vert _2\geqslant \delta ^{-\alpha }\), and \((\mu *\mu )(H^{(\rho )})\leqslant \delta ^{-\gamma }\rho ^{\kappa }\), for all \(\rho \geqslant \delta \) and any proper closed connected subgroup \(H<G\), for some \(\gamma >0\).

By using (a), (c) and Lemma A.5 we get that

  • supp\((\mu )\subset B(1,2C\beta \log {\frac{1}{\delta }}).\)

  • \(\Vert \mu *Q_{\delta ^{1-O(\beta )}}\Vert _2\ll \Vert \mu *Q_{\delta }\Vert _2\ll \delta ^{-\alpha }\).

  • \((\mu *\mu )(H^{[\rho ]})\leqslant (\mu *\mu )(H^{(\delta ^{-O(\beta )}\rho )})\leqslant \delta ^{-(\gamma +\kappa O(\beta ))}\rho ^{\kappa }\), for all \(\rho \geqslant \delta \) and any proper closed connected subgroup \(H<G\).

If \(\beta ,\gamma >0\) are chosen small enough, then Theorem A.1 implies that \(\Vert \mu _{\delta }*\mu _{\delta }\Vert _2<\delta ^{\varepsilon }\Vert \mu _{\delta }\Vert _2\). Moreover, if \(\beta ,\gamma \) are small enough, then by combining this inequality with (a) and (b) we derive that

$$\begin{aligned} \Vert \mu *\mu *P_{\delta }\Vert _2\ll \Vert \mu *\mu *Q_{\delta }\Vert _2&\leqslant \delta ^{-O(\beta )}\Vert \mu *Q_{\delta ^{1-O(\beta )}}*\mu *Q_{\delta ^{1-O(\beta )}}\Vert _2\\ {}&\leqslant \delta ^{-O(\beta )+(1-O(\beta ))\varepsilon }\Vert \mu *Q_{\delta ^{1-O(\beta )}}\Vert _2\\ {}&\leqslant \delta ^{\varepsilon -O(\beta )}\Vert \mu *Q_{\delta }\Vert _2\\ {}&\leqslant \delta ^{\varepsilon -O(\beta )}\Vert \mu *P_{\delta }\Vert _2\\ {}&\leqslant \delta ^{\gamma }\Vert \mu *P_{\delta }\Vert _2. \end{aligned}$$

This concludes the proof of Lemma 4.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutonnet, R., Ioana, A. & Golsefidy, A.S. Local spectral gap in simple Lie groups and applications. Invent. math. 208, 715–802 (2017). https://doi.org/10.1007/s00222-016-0699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0699-8

Navigation