Skip to main content
Log in

Non-minimality of corners in subriemannian geometry

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We give a short solution to one of the main open problems in subriemannian geometry. Namely, we prove that length minimizers do not have corner-type singularities. With this result we solve Problem II of Agrachev’s list, and provide the first general result toward the 30-year-old open problem of regularity of subriemannian geodesics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Alternatively, one can use the formula [26, page 114]

    $$\begin{aligned} \mathrm {C}_{\exp \left( X\right) }\left( \exp (Y)\right) = \exp (\mathrm {Ad}_{\exp (X)}Y) = \exp (e^{\mathrm {ad}_X}Y). \end{aligned}$$
  2. We remark that for rank-varying distributions, desingularizations of curves with corner-type singularities need not have one-sided derivatives.

References

  1. Agrachev, A., Barilari, D., Boscain, U.: Introduction to Riemannian and Sub-Riemannian Geometry (2015) (manuscript)

  2. Agrachev, A.A.: Some open problems. In: Stefani, G., Boscain, U., Gauthier, J.-P., Sarychev, A., Sigalotti, M. (eds.) Geometric Control Theory and Sub-Riemannian Geometry. Springer INdAMSeries, vol. 5, pp. 1–13. Springer, Cham (2014)

  3. Agrachev, A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences, Control Theory and Optimization II, vol. 87. Springer, Berlin (2004)

  4. Bryant, R.L., Hsu, L.: Rigidity of integral curves of rank \(2\) distributions. Invent. Math. 114(2), 435–461 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Le Donne, E.: A Primer of Carnot Groups (2015) (Manuscript)

  6. Golé, C., Karidi, R.: A note on Carnot geodesics in nilpotent Lie groups. J. Dyn. Control Syst. 1(4), 535–549 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. In: Progress in Mathematics, vol. 152. Birkhäuser Boston Inc., Boston (1999) (Based on the French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French version by Sean Michael Bates (1981))

  8. Gromov, M.: Carnot-Carathéodory spaces seen from within. In: Bellaiche, A., Risler, J.J. (eds.) Sub-Riemannian Geometry. Progress in Mathematics, vol. 144, pp. 79–323. Birkhäuser, Basel (1996)

  9. Hamenstädt, U.: Some regularity theorems for Carnot–Carathéodory metrics. J. Differ. Geom. 32(3), 819–850 (1990)

    MATH  Google Scholar 

  10. Jean, F.: Control of Nonholonomic Systems: from Sub-riemannian Geometry to Motion Planning. Springer Briefs in Mathematics. Springer, Cham (2014)

  11. Le Donne, E., Leonardi, G.P., Monti, R., Vittone, D.: Extremal polynomials in stratified groups (2014) (preprint, submitted)

  12. Le Donne, E., Leonardi, G.P., Monti, R., Vittone, D.: Extremal curves in nilpotent Lie groups. Geom. Funct. Anal. 23(4), 1371–1401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Le Donne, E., Leonardi, G.P., Monti, R., Vittone, D.: Corners in non-equiregular sub-Riemannian manifolds. ESAIM Control Optim. Calc. Var. 21(3), 625–634 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leonardi, G.P., Monti, R.: End-point equations and regularity of sub-Riemannian geodesics. Geom. Funct. Anal. 18(2), 552–582 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, W., Sussmann, H.J.: Shortest paths for sub-Riemannian metrics on rank-two distributions. Memoirs Am. Math. Soc. 118(564), 104 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. In: Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002)

  17. Montgomery, R.: Abnormal minimizers. SIAM J. Control Optim. 32(6), 1605–1620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Monti, R.: A family of nonminimizing abnormal curves. Ann. Math. Pura Appl. (4) 193(6), 1577–1593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Monti, R.: The regularity problem for sub-Riemannian geodesics. In: Geometric Control Theory and Sub-Riemannian Geometry. Springer INdAM Series, vol. 5, pp. 313–332. Springer, Cham (2014)

  20. Monti, R.: Regularity results for sub-Riemannian geodesics. Calc. Var. Partial Differ. Equ. 49(1–2), 549–582 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rifford, L.: Sub-Riemannian Geometry and Optimal Transport. Springer Briefs in Mathematics. Springer, Cham (2014)

  22. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Strichartz, R.S.: Corrections to: Sub-Riemannian geometry. J. Differ. Geom. 30(2), 595–596 (1989)

    MathSciNet  Google Scholar 

  24. Sussmann, H.J.: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers. In: Sub-Riemannian Geometry, Progr. Math, vol. 144, pp. 341–364. Birkhäuser, Basel (1996)

  25. Sussmann, H.J.: A regularity theorem for minimizers of real-analytic subriemannian metrics. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 4801–4806 (2014)

  26. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics, vol. 94. Springer, New York (1983) (Corrected reprint of the 1971 edition)

  27. Liu, W., Sussmann, H.J.: Abnormal sub-Riemannian minimizers. Differ. Equ. Dyn. Syst. Control Sci. 152, xl+946 (1994). (A Festschrift in honor of Lawrence Markus)

Download references

Acknowledgments

The authors thank A. Ottazzi, D. Vittone, and the anonymous referees for their helpful remarks. E.L.D. acknowledges the support of the Academy of Finland project no. 288501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Le Donne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakavuori, E., Le Donne, E. Non-minimality of corners in subriemannian geometry. Invent. math. 206, 693–704 (2016). https://doi.org/10.1007/s00222-016-0661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0661-9

Mathematics Subject Classification

Navigation