Skip to main content
Log in

Exceptional zero formulae and a conjecture of Perrin-Riou

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let \(A/\mathbf{Q}\) be an elliptic curve with split multiplicative reduction at a prime p. We prove (an analogue of) a conjecture of Perrin-Riou, relating p-adic Beilinson–Kato elements to Heegner points in \(A(\mathbf{Q})\), and a large part of the rank-one case of the Mazur–Tate–Teitelbaum exceptional zero conjecture for the cyclotomic p-adic L-function of A. More generally, let f be the weight-two newform associated with A, let \(f_{\infty }\) be the Hida family of f, and let \(L_{p}(f_{\infty },k,s)\) be the Mazur–Kitagawa two-variable p-adic L-function attached to \(f_{\infty }\). We prove a p-adic Gross–Zagier formula, expressing the quadratic term of the Taylor expansion of \(L_{p}(f_{\infty },k,s)\) at \((k,s)=(2,1)\) as a non-zero rational multiple of the extended height-weight of a Heegner point in \(A(\mathbf{Q})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Théorème 7 of [22] proves these facts assuming that the residual Galois representation \(\overline{\rho }_{\mathbf {f}}\) of \(\mathbb {T}\) is absolutely irreducible. As pointed out to us by J. Nekovář, loc. cit. also requires \(\overline{\rho }_{\mathbf {f}}\) to be p-distinguished (see [9]). As \(\overline{\rho }_{\mathbf {f}}\cong {}A_{p}\) and \(p\not =2\), this hypothesis is automatically satisfied in our case, by Tate’s theory of p-adic uniformisation.

References

  1. Bertolini, M., Darmon, H.: Heegner points, \(p\)-adic L-functions and the Cerednik–Drinfeld uniformization. Invent. Math. 131, 453–491 (1998)

  2. Bertolini, M., Darmon, H.: Hida families and rational points on elliptic curves. Invent. Math. 168(2), 371–431 (2007)

  3. Bertolini, M., Darmon, H.: Kato’s Euler system and rational points on elliptic curves I: a \(p\)-adic Beilinson formula. Isr. J. Math. 199(1), 163–188 (2014)

  4. Bertolini, M., Darmon, H., Prasanna, K.: Generalized Heegner cycles and p-adic Rankin L-series. With an appendix by Brian Conrad. Duke Math. J. 162(6), 1033–1148 (2013)

  5. Bertrand, D.: Transcendence et lois de groupes algébriques. Séminaire Delange-Pisot-Poitou. Théorie de nombres. 18(1), 1–10 (1976–1977)

  6. Bloch, S., Kato, K.: \(L\)-functions and Tamagawa numbers of motives. In: Cartier, P., Illusie, L., Katz, N., Laumon, G. (eds.) The Grothendieck Festschrift. Modern Birkhäuser Classics (1990)

  7. Barré-Sirieix, K., Diaz, G., Gramain, F., Philibert, G.: Une Preuve de la Conjecture de Mahler-Manin. Invent. Math. 124, 1–9 (1996)

  8. Coleman, R.: Division values in local fields. Invent. Math. 53, 91–116 (1979)

  9. Emerton, M., Pollack, R., Weston, T.: Variation of Iwasawa invariants in Hida families. Invent. Math. 163, 523–580 (2006)

  10. Greenberg, R., Stevens, G.: \(p\)-Adic L-functions and \(p\)-adic periods of modular forms. Invent. Math. 4(111), 407–447 (1993)

  11. Greenberg, R., Vatsal, V.: On the Iwasawa invariants of elliptic curves. Invent. Math. 142, 17–63 (2000)

  12. Gross, B., Zagier, D.: Heegner points and derivatives of \(L\)-series. Invent. Math. 86(2), 225–320 (1986)

  13. Hida, H.: Galois representations into \({GL}_{{2}}(\mathbf{Z}_{p}[\!\![X]\!\!])\) attached to ordinary cusp forms. Invent. Math. 85(3), 545–613 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hida, H.: Iwasawa modules attached to congruences of cusp forms. Ann. Sci. Éc. Norm. Sup. 19(4), 231–273 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Kato, K.: Lectures in the approach to Iwasawa theory for Hasse–Weil L-functions via \(B_{\rm dR}\). In: Arithmetic Algebraic Geometry (Trento 1991). Lecture Notes in Math., vol. 1553, pp. 50–163. Springer, New York (1993)

  16. Kato, K.: \(p\)-Adic Hodge theory and values of zeta functions of modular forms. Astérisque 295, 117–290 (2004)

  17. Kitagawa, K.: On standard \(p\)-adic \(L\)-functions of families of elliptic cusp forms. In: Mazur, B., Stevens, G. (eds.) \(p\)-Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture. American Mathematical Society, Providence (1994)

    Google Scholar 

  18. Kobayashi, S.: The \(p\)-adic Gross–Zagier formula for elliptic curves at supersingular primes. Invent. Math. 191(3), 527–629 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolyvagin, V.A.: Euler systems. In: The Grothendieck Festschrift, vol. II. Progr. Math., vol. 87. Birkhäuser, Boston (1990)

  20. Loeffler, D., Venjacob, O., Zerbes, S.L.: Local epsilon isomorphisms. Kyoto J. Math. 55(1), 63–127 (2015)

    Article  MathSciNet  Google Scholar 

  21. Mok, C.P.: Heegner points and p-adic L-functions for elliptic curves over certain totally real fields. Comment. Math. Helv. 86(4), 867–945 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mazur, B., Tilouine, J.: Représentations galoisiennes, différentielles de Kähler et conjectures principales. Publ. Math. de l’I.H.E.S. 71, 65–103 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazur, B., Tate, J., Teitelbaum, J.: On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 126(1), 1–48 (1986)

    Article  MathSciNet  Google Scholar 

  24. Nekovar, J.: On p-adic height pairings. In: Seminaire de Theorie des Nombres, Paris, 1990–1991. In: Progr. in Math., vol. 108. Birkhäuser, Boston (1993)

  25. Nekovar, J.: Selmer complexes. Astérisque 310 (2006)

  26. Nekovar, J., Plater, A.: On the parity of ranks of Selmer groups. Asian J. Math. 4(2), 437–498 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ochiai, T.: A generalization of the Coleman map for Hida deformations. Am. J. Math. 125(4), 849–892 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ochiai, T.: On the two-variable Iwasawa main conjecture. Compos. Math. 142, 1157–1200 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ohta, M.: On the \(p\)-adic Eichler–Shimura isomorphism for \(\Lambda \)-adic cusp forms. J. Reine Angew. Math. 463, 49–98 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Perrin-Riou, B.: Points de Heegner et dérivées de fonctions L p-adiques. Invent. Math. 89(3), 455–510 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Perrin-Riou, B.: Thèorie d’Iwasawa et hauteurs \(p\)-adiques. Invent. Math. 109(1), 137–185 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Perrin-Riou, B.: Fonctions \(L\) \(p\)-adiques d’une courbe elliptique et points rationnels. Ann. Inst. Fourier, Grenoble 43(4), 945–995 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Perrin-Riou, B.: Théorie d’Iwasawa des représentations p-adiques sur un corps local. With an appendix by Jean-Marc Fontaine. Invent. Math. 115(1), 81–161 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rohrlich, D.E.: On L-functions of elliptic curves and cyclotomic towers. Invent. Math. 75(3), 409–423 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rubin, K.: Abelian varieties, \(p\)-adic heights and derivatives. In: Frey, G., Ritter, J. (eds.) Algebra and Number Theory. de Gruyter (1994)

  36. Rubin, K.: Euler systems and modular elliptic curves. In: Scholl, A., Taylor, R. (eds.) Galois Representations in Arithmetic Algebraic Geometry. London Math. Soc. Lect. Notes, vol. 254. Cambridge University Press, Cambridge (1998)

  37. Rubin, K.: Euler systems. In: Annals of Mathematics Studies, vol. 147. Hermann Weyl Lectures. The Institute for Advanced Study. Princeton University Press, Princeton (2000)

  38. Schneider, P.: \(p\)-Adic height pairings I. Invent. Math. 69(3), 401–409 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  39. Serre, J.P.: Local class field theory. In: Cassels, J.W.S., Frohlich, A. (eds.) Algebraic Number Theory. Academic Press, New York (1967)

  40. Silverman, J.: The Arithmetic of Elliptic Curves. Springer, New York (1986)

  41. Silverman, J.: Advanced Topics in the Arithmetic of Elliptic Curves. Springer, New York (1994)

  42. Venerucci, R.: \(p\)-Adic regulators and \(p\)-adic analytic families of modular forms. Ph.D. thesis, University of Milan (2013)

  43. Venerucci, R.: \(p\)-adic regulators and \(p\)-adic families of modular forms. (2015, preprint)

  44. Wiles, A.: Higher explicit reciprocity laws. Ann. Math. (2) 107(2), 235–254 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Much of the work on this article was carried out during my Ph.D. at the University of Milan. It is a pleasure to express my sincere gratitude to my supervisor, Prof. Massimo Bertolini, who constantly encouraged and motivated my work. Every meeting with him has been a source of ideas and enthusiasm; this paper surely originated from and grew up through these meetings. I would like to thank Marco Seveso for a careful reading of the paper and for many interesting discussions related to this work. I am also grateful to the anonymous referee; the current version of the article is greatly inspired by his/her corrections and valuable comments, which helped me to significantly clarify and improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Venerucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venerucci, R. Exceptional zero formulae and a conjecture of Perrin-Riou. Invent. math. 203, 923–972 (2016). https://doi.org/10.1007/s00222-015-0606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0606-8

Navigation