Skip to main content
Log in

The boundary of a square tiling of a graph coincides with the Poisson boundary

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Answering a question of Benjamini and Schramm (Ann Probab 24(3):1219–1238, 1996), we show that the Poisson boundary of any planar, uniquely absorbing (e.g. one-ended and transient) graph with bounded degrees can be realised geometrically as a circle, which arises from a discrete version of Riemann’s mapping theorem. This implies a conjecture of Northshield (Potential Anal 2(4):299–314, 1993). Some of our technique apply to the non-planar case and might have further applications. When the graph is also hyperbolic then, under mild conditions, we prove the equivalence of several boundary constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See Sect. 2 for definitions.

  2. These two terms were coined by the author; see Sect. 8 for definitions.

  3. Recently announced by Russell Lyons and Yuval Peres.

  4. Some authors apply Gelfand-theoretic techniques on the space of bounded harmonic functions to give an abstract definition of the Poisson boundary, and one could try to do the same using the sharp harmonic functions; we will refrain from this since our aim is not to provide yet another definition of the Poisson boundary.

  5. Feller [18, § 4] defines union and intersection operations of pairs of arbitrary bounded harmonic functions, and notes that these operations endow their space with a lattice structure (thanks to Yves Derriennic for this remark); when these functions are sharp, it is easy to check that our concepts coincide.

  6. Northshield requires instead that every cycle in \(G\ \)surrounds only finitely many vertices; that this is equivalent to (i) as proved in [39, Lemma 7.1].

References

  1. Ancona, A.: Negatively curved manifolds, elliptic operators, and the Martin boundary. Ann. Math. 125(3), 495 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ancona, A.: Positive harmonic functions and hyperbolicity. In: Potential Theory Surveys and Problems, Lecture Notes in Mathematics, vol. 1344, pp. 1–23 (1988)

  3. Anderson, Michael T., Schoen, Richard: Positive harmonic functions on complete manifolds of negative curvature. Ann. Math. 121(2), 429 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angel, O., Barlow, M.T., Gurel-Gurevich, O., Nachmias, A.: Boundaries of planar graphs, via circle packings (2013). arXiv:1311.3363 [math]

  5. Baxter, J.R., Chacon, R.V.: The equivalence of diffusions on networks to Brownian motion. Contemp. Math. 26, 33–47 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benjamini, I., Curien, N., Georgakopoulos, A.: The Liouville and the intersection properties are equivalent for planar graphs. 17(42), 1–5 (2012)

  7. Benjamini, I., Kozma, G.: Nonamenable Liouville Graphs (2010). arXiv:1010.3365 [math]

  8. Benjamini, I., Schramm, O.: Harmonic functions on planar and almost planar graphs and manifolds, via circle packings. Invent. math. 126, 565–587 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benjamini, I., Schramm, O.: Random walks and harmonic functions on infinite planar graphs using square tilings. Ann. Probab. 24(3), 1219–1238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bogachev, Vladimir I.: Measure Theory II. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  11. Brooks, R.L., Smith, C.A.B., Stone, A.H., Tutte, W.T.: The dissection of rectangles into squares. Duke Math. J. 7(1), 312–340 (1940)

    Article  MathSciNet  Google Scholar 

  12. Cannon, J.W., Floyd, W.J., Parry, W.R.: Squaring rectangles: the finite Riemann mapping theorem. In: Abikoff, W. (ed.) The Mathematical Legacy of Wilhelm Magnus. Contemp. Math., vol. 169 (1994)

  13. Colin de Verdière, Y., Gitler, I., Vertigan, D.: Planar electric networks. II. (Reseaux électriques planaires. II.). Comment. Math. Helv. 71(1), 144–167 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Curien, N.: Planar stochastic hyperbolic infinite triangulations (preprint)

  15. Dehn, M.: Über Zerlegung von Rechtecken in Rechtecke. Math. Ann. 57, 314–332 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diestel, R.: Graph Theory, 3rd edn. Springer, Berlin (2005) (electronic edition available at http://www.math.uni-hamburg.de/home/diestel/books/graph.theory)

  17. Duijvestijn, A.J.W.: Simple perfect squared square of lowest order. J. Comb. Theory Ser. B 25, 240–243 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feller, W.: Boundaries induced by non-negative matrices. Trans. Am. Math. Soc. 83(1), 19–54 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  19. Furstenberg, H.: A Poisson formula for semi-simple Lie groups. Ann. Math. 77(2), 335–386 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. Furstenberg, H.: Random walks and discrete subgroups of Lie groups. Adv. Probab. Relat. Topics 1, 3–63 (1971)

    Google Scholar 

  21. Georgakopoulos, A., Kaimanovich, V.: In preparation

  22. Ghys, E., de la Harpe, P.: Sur les Groupes Hyperboliques d’ après Mikhael Gromov. Birkhäuser (1990) (English translation: http://www.umpa.ens-lyon.fr/ghys/Publis-english.html)

  23. Gurel-Gurevich, O., Nachmias, A.: Recurrence of planar graph limits. Ann. Math. 177(2), 761–781 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaimanovich, V.: The poisson formula for groups with hyperbolic properties. Ann. Math. 152(3), 659–692 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaimanovich, V.A., Masur, H.: The poisson boundary of the mapping class group. Invent. Math. 125(2), 221–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaimanovich, V.A., Vershik, A.M.: Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3), 457–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karatzas, Ioannis, Shreve, Steven E.: Brownian Motion and Stochastic Calculus. Springer, Berlin (1991)

    MATH  Google Scholar 

  28. Karlsson, A., Woess, W.: The poisson boundary of lamplighter random walks on trees. Geom. Dedicata 124(1), 95–107 (2006)

    Article  MathSciNet  Google Scholar 

  29. Karr, A.F.: Probability. Springer Texts in Statistics (1993)

  30. Kenyon, R.: Tilings and discrete dirichlet problems. Israel J. Math. 105(1), 61–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kenyon, R.W., Sheffield, S.: Dimers, tilings and trees. J. Combin. Theory Ser. B 92(2), 295–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press, Cambridge (2015, in preparation) (current version available at http://mypage.iu.edu/rdlyons/prbtree/prbtree.html)

  33. Pitman, J.W., Barlow, M.T., Yor, M.: On Walsh’s Brownian motions. Séminaire de Probabilités (Strasbourg) 23(1), 275–293 (1989)

    MathSciNet  Google Scholar 

  34. Northshield, S.: Circle boundaries of planar graphs. Potential Anal. 2(4), 299–314 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Richter, R.B., Thomassen, C.: \(3\)-connected planar spaces uniquely embed in the sphere. Trans. Am. Math. Soc. 354, 4585–4595 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rohde, S.: Oded schramm: From circle packing to SLE. In: Benjamini, I., Häggström, O. (eds.) Selected Works of Oded Schramm, Selected Works in Probability and Statistics, pp. 3–45. Springer, New York (2011)

    Chapter  Google Scholar 

  37. Rohlin, V.A.: On the fundamental ideas of measure theory. In: Translations, vol. 71. Amer. Math. Soc. (1952)

  38. Short, H. (ed.): Notes on Hyperbolic Groups. http://www.cmi.univ-mrs.fr/hamish/

  39. Thomassen, C.: Planarity and duality of finite and infinite graphs. J. Combin. Theory Ser. B 29(2), 244–271 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  40. Woess, W.: Denumerable Markov chains. Generating functions, boundary theory, random walks on trees. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2009)

Download references

Acknowledgments

I am grateful to Omer Angel, Ori Gurel-Gurevich and Asaf Nachmias for pointing out some shortcommings in an earlier draft of this paper, and to Vadim Kaimanovich and Itai Benjamini for valuable discussions. I am also grateful to Yuval Peres for important remarks, improving in particular the definition of an M-boundary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agelos Georgakopoulos.

Additional information

A. Georgakopoulos was supported by EPSRC Grant EP/L002787/1 and FWF Grant P-24028-N18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgakopoulos, A. The boundary of a square tiling of a graph coincides with the Poisson boundary. Invent. math. 203, 773–821 (2016). https://doi.org/10.1007/s00222-015-0601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0601-0

Navigation