Skip to main content
Log in

The triviality problem for profinite completions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that there is no algorithm that can determine whether or not a finitely presented group has a non-trivial finite quotient; indeed, this property remains undecidable among the fundamental groups of compact, non-positively curved square complexes. We deduce that many other properties of groups are undecidable. For hyperbolic groups, there cannot exist algorithms to determine largeness, the existence of a linear representation with infinite image (over any infinite field), or the rank of the profinite completion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adyan, S.I.: Algorithmic unsolvability of problems of recognition of certain properties of groups. Dokl. Akad. Nauk SSSR (N.S.) 103, 533–535 (1955)

    MATH  MathSciNet  Google Scholar 

  2. Adyan, S.I.: Unsolvability of some algorithmic problems in the theory of groups. Trudy Moskov. Mat. Obšč. 6, 231–298 (1957)

  3. Agol, I.: The virtual Haken conjecture. Doc. Math. 18, 1045–1087 (2013) (with an appendix by Ian Agol, Daniel Groves and Jason Manning)

  4. Bajpai, J.: Omnipotence of surface groups. Masters Thesis, McGill University (2007)

  5. Baumslag, G., Boone, W.W., Neumann, B.H.: Some unsolvable problems about elements and subgroups of groups. Math. Scand. 7, 191–201 (1959)

    MATH  MathSciNet  Google Scholar 

  6. Belegradek, I., Osin, D.: Rips construction and Kazhdan property (T). Groups Geom. Dyn. 2(1), 1–12 (2008)

  7. Bestvina, M.: Questions in geometric group theory. http://www.math.utah.edu/~bestvina/eprints/questions-updated

  8. Bhattacharjee, M.: Constructing finitely presented infinite nearly simple groups. Commun. Algebra 22(11), 4561–4589 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boone, W.W.: The word problem. Ann. Math. 2(70), 207–265 (1959)

    Article  MathSciNet  Google Scholar 

  10. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)

  11. Bridson, M.R., Wilton, H.: The isomorphism problem for profinite completions of finitely presented, residually finite groups. Groups Geom. Dyn. 8, 733–745 (2014)

  12. Bridson, M.R., Wilton, H.: Undecidability and the developability of permutoids and rigid pseudogroups. arXiv:1405.4368 (2014)

  13. Burger, M., Mozes, S.: Finitely presented simple groups and products of trees. C. R. Acad. Sci. Paris Sér. I Math. 324(7), 747–752 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Button, J.O.: Largeness of LERF and 1-relator groups. Groups Geom. Dyn. 4(4), 709–738 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cameron, P.: Extending partial permutations. http://www.maths.qmul.ac.uk/~pjc/odds/partial (2004)

  16. Corlette, K.: Archimedean superrigidity and hyperbolic geometry. Ann. Math. (2) 135(1), 165–182 (1992)

  17. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71(1), 116–144 (1911)

    Article  MathSciNet  Google Scholar 

  18. Gersten, S.M., Short, H.B.: Small cancellation theory and automatic groups. Invent. Math. 102(2), 305–334 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gromov, M., Schoen, R.: Harmonic maps into singular spaces and \(p\)-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. 76, 165–246 (1992)

  20. Kan, D.M., Thurston, W.P.: Every connected space has the homology of a \(K(\pi,1)\). Topology 15(3), 253–258 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kapovich, M.: Representations of polygons of finite groups. Geom. Topol. 9:1915–1951 (2005) (electronic)

  22. Kapovich, I., Wise, D.T.: The equivalence of some residual properties of word-hyperbolic groups. J. Algebra 223(2), 562–583 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kharlampovich, O.G.: The universal theory of the class of finite nilpotent groups is undecidable. Mat. Zametki 33(4), 499–516 (1983)

    MATH  MathSciNet  Google Scholar 

  24. Kharlampovich, O., Myasnikov, A.: Decidability of the elementary theory of a torsion-free hyperbolic group. arXiv:1303.0760v4 (2013)

  25. Leary, I.J.: A metric Kan-Thurston theorem. J. Topol. 6(1), 251–284 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Makanin, G.S.: Decidability of the universal and positive theories of a free group. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 48(4), 735–749 (1984)

    MathSciNet  Google Scholar 

  27. Miller, C.F., III: Decision problems for groups–survey and reflections. In: Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), number 23, Math. Sci. Res. Inst. Publ., pp. 1–59. Springer, New York (1992)

  28. Niblo, G.A., Reeves, L.D.: The geometry of cube complexes and the complexity of their fundamental groups. Topology 37(3), 621–633 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory. Trudy Mat. Inst. im. Steklov. no. 44. Izdat. Akad. Nauk SSSR, Moscow (1955)

  30. Osin, D.: Small cancellations over relatively hyperbolic groups and embedding theorems. Ann. Math. (2) 172(1), 1–39 (2010)

  31. Papasoglu, P.: An algorithm detecting hyperbolicity. In: Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994), volume 25 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pp. 193–200. American Mathematical Society, Providence (1996)

  32. Pride, S.J.: The concept of “largeness” in group theory. In: Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), volume 95 of Stud. Logic Foundations Math., pp. 299–335. North-Holland, Amsterdam (1980)

  33. Rabin, M.O.: Recursive unsolvability of group theoretic problems. Ann. Math. 2(67), 172–194 (1958)

    Article  MathSciNet  Google Scholar 

  34. Rips, E.: Subgroups of small cancellation groups. Bull. Lond. Math. Soc. 14(1), 45–47 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sela, Z.: Diophantine geometry over groups. VII. The elementary theory of a hyperbolic group. Proc. Lond. Math. Soc. (3) 99(1), 217–273 (2009)

  36. Slobodskoĭ, A.M.: Undecidability of the universal theory of finite groups. Algebra i Logika 20(2), 207–230 (1981) (251)

  37. Stallings, J.R.: Topology of finite graphs. Invent. Math. 71(3), 551–565 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wilton, H.: Virtual retractions, conjugacy separability and omnipotence. J. Algebra 323, 323–335 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wise, D.T.: Subgroup separability of graphs of free groups with cyclic edge groups. Q. J. Math. 51(1), 107–129 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wise, D.T.: The residual finiteness of negatively curved polygons of finite groups. Invent. Math. 149(3), 579–617 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wise, D.T.: Cubulating small cancellation groups. Geom. Funct. Anal. 14(1), 150–214 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wise, D.T.: Complete square complexes. Comment. Math. Helv. 82(4), 683–724 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wise, D.T.: The structure of groups with a quasi-convex hierarchy. http://www.math.mcgill.ca/wise/papers.html (2012, preprint)

Download references

Acknowledgments

We first tried to prove Theorem A at the urging of Peter Cameron, who was interested in its implications for problems in combinatorics [12, 15]; we are grateful to him for this impetus. We thank Jack Button and Chuck Miller for stimulating conversations about Theorem A and its consequences. Finally, we are grateful for the insightful comments of the anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Bridson.

Additional information

This work was supported by Fellowships from the EPSRC (M. R. Bridson and H. Wilton) and by a Wolfson Research Merit Award from the Royal Society (M. R. Bridson).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridson, M.R., Wilton, H. The triviality problem for profinite completions. Invent. math. 202, 839–874 (2015). https://doi.org/10.1007/s00222-015-0578-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0578-8

Mathematics Subject Classification

Navigation