Skip to main content
Log in

Sobolev estimates for the complex Green operator on CR submanifolds of hypersurface type

  • Published:
Inventiones mathematicae Aims and scope

An Erratum to this article was published on 17 December 2014

Abstract

Let \(M\) be a pseudoconvex, oriented, bounded and closed CR submanifold of \(\mathbb {C}^{n}\) of hypersurface type. Our main result says that when a certain \(1\)-form on \(M\) is exact on the null space of the Levi form, then the complex Green operator on \(M\) satisfies Sobolev estimates. This happens in particular when \(M\) admits a set of plurisubharmonic defining functions or when \(M\) is strictly pseudoconvex except for the points on a simply connected complex submanifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [7], the authors only needed to assume that the defining function is plurisubharmonic at points of the boundary. Our proof does use plurisubharmonicity in some (arbitrarily small) neighborhood of \(M\). This may be an artifact of the proof. On the other hand, in terms of actually verifying the assumption, not much is lost. The role of \(\alpha _{M}\) is not made explicit in [7].

  2. Often referred to as the Lewy extension theorem, but see [25, 38].

  3. Via the continuity principle (see e.g. [37], Theorem 5.8 in section 5.4). Indeed, if there were a (small) disc with boundary in \(\pi (M)\) and non-empty intersection with the pseudoconcave side of \(\pi (M)\), translating it along the normal to \(\pi (M)\) at \(\pi (\gamma (t_{0}))\) would produce a one parameter family of discs that contradicts the continuity principle on the pseudoconvex side of \(\pi (M)\).

  4. \(\pi (M)\) may be Levi flat near \(\pi (\gamma (t))\), so that both sides are pseudoconvex. However, the pseudoconvex side of \(M\) is defined globally (it is given by \(iJT\)). The local projections \(\pi \) near a point in \(M\) then transfer this direction/side “downstairs”.

References

  1. Baracco, L.: The range of the tangential Cauchy–Riemann system to a CR embedded manifold. Invent. Math. 190, 505–510 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baracco, L.: Erratum to: the range of the tangential Cauchy–Riemann system to a CR embedded manifold. Invent. Math. 190, 511–512 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, D.E.: The Bergman projection on sectorial domains. In: Operator theory for complex and hypercomplex analysis. Contemporary Mathematics, vol. 212, pp. 1–14. American Mathematical Society, Providence, RI (1998)

  4. Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Real submanifolds in complex space and their mappings. Princeton University Press, Princeton (1999)

  5. Boas, H.P., Straube, E.J.: Equivalence of regularity for the Bergman projection and the \(\overline{\partial }\)-Neumann operator. Manuscripta Math. 67, 25–33 (1990)

  6. Boas, H.P.: Sobolev estimates for the \(\overline{\partial }\)-Neumann operator on domains in \(\mathbb{C}^{n}\) admitting a defining function that is plurisubharmonic on the boundary. Math. Z. 206, 81–88 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boas, H.P.: Sobolev estimates for the complex Green operator on a class of weakly pseudoconvex boundaries. Commun. Partial Diff. Equ. 16(10), 1573–1582 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boas, H.P.: The Bergman projection on Hartogs domains in \(\mathbb{C}^{2}\). Trans. Am. Math. Soc. 331, 529–540 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Boas, H.P.: De Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the \(\overline{\partial }\)-Neumann problem. J. Geom. Anal. 3(3), 225–235 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boggess, A.: CR-manifolds and the tangential Cauchy–Riemann complex. Studies in Advanced Mathematics. CRC Press, Boston (1991)

  11. Brinkschulte, J.: Laufer’s vanishing theorem for embedded CR manifolds. Math. Z. 239, 863–866 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Catlin, D., Lempert, L.: A note on the instability of embeddings of Cauchy–Riemann manifolds. J. Geom. Anal. 2, 99–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, S.-C., Shaw, M.-C.: Partial differential equations in several complex variables. Studies in Advanced Mathematics, vol. 19, American Mathematical Society/International Press, New York (2001)

  14. D’Angelo, J.: Finite type conditions for real hypersurfaces. J. Diff. Geom. 14, 59–66 (1980)

    Article  MathSciNet  Google Scholar 

  15. D’Angelo, J.: Iterated commutators and derivatives of the Levi from. In: Complex Analysis (Univ. Park, PA, 1986). Lecture Notes in Mathematics vol. 1268, pp. 103–110

  16. D’Angelo, J.: Several Complex variables and the geometry of real hypersurfaces. Studies in Advanced Mathematics. CRC Press, Boca Raton (1993)

    Google Scholar 

  17. Derridj, M., Tartakoff, D.: On the global real analyticity of solutions to the \(\overline{\partial }\)-Neumann problem. Comm. Partial Diff. Equ. 1(5), 401–435 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy–Riemann complex. Annals of Mathematics Studies, vol. 75. Princeton University Press, Princeton (1972)

  19. Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology, vol. 1, pure and applied mathematics 47-I. Academic Press, New York (1972)

  20. Hanges, N., Trèves, F.: Propagation of holomorphic extendability of CR functions. Math. Ann. 263(2), 157–177 (1983)

  21. Harrington, P.S., Peloso M.M., Raich A.S.: Regularity equivalence of the Szegö projection and the complex Green operator (preprint 2013). arXiv:1305.0188

  22. Harrington, P.S., Raich, A.: Regularity results for \(\overline{\partial }_{b}\) on CR-manifolds of hypersurface type. Commun. Partial Diff. Equ. 36(1), 134–161 (2011)

  23. Harvey, F.R., Lawson, H.B. Jr: On boundaries of complex analytic varieties I. Ann. Math. 102, 223–290 (1975)

  24. Hörmander, L.: \(L^{2}\) estimates and existence theorems for the \(\overline{\partial }\) operator. Acta Math. 113, 89–152 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kneser, H.: Die Randwerte einer analytischen Funktion zweier Veränderlichen. Monatshefte f. Math. u. Phys. 43, 364–380 (1936)

    Article  MathSciNet  Google Scholar 

  26. Koenig, K.D.: A parametrix for the \(\overline{\partial }\)-Neumann problem on pseudoconvex domains of finite type. J. Func. Anal. 216, 243–302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kohn, J.J.: Boundaries of complex manifolds. In: Proceedings of Conference on Complex Analysis (Minneapolis, 1964), pp. 81–94. Springer. Berlin (1965)

  28. Kohn, J.J.: Global regularity for \(\overline{\partial }\) on weakly pseudo-convex manifolds. Trans. Am. Math. Soc. 181, 273–292 (1973)

    MathSciNet  MATH  Google Scholar 

  29. Kohn, J.J.: Microlocalization of CR structures. Several complex variables (Hangzhou, 1981), 29–36. Birkhuser, Boston (1984)

    Book  Google Scholar 

  30. Kohn, J.J.: Estimates for \(\overline{\partial }_{b}\) on pseudoconvex CR manifolds. Pseudodifferential Operators and Applications (Notre Dame, Ind., 1984). In: Proceedings of Symposium on Pure Mathematics, vol. 43, pp. 207–217. American Mathematical Society, Providence, RI (1985)

  31. Kohn, J.J.: Private communication

  32. Kohn, J.J., Nicoara, A.C.: The \(\overline{\partial }_{b}\) equation on weakly pseudo-convex CR manifolds of dimension 3. J. Funct. Anal. 230(2), 251–272 (2006)

  33. Munasinghe, S., Straube, E.J.: Geometric sufficient conditions for compactness of the complex Green operator. J. Geom. Anal. 22(4), 1007–1026 (2012)

  34. Nicoara, A.C.: Global regularity for \(\overline{\partial }_b\) on weakly pseudoconvex CR manifolds. Adv. Math. 199(2), 356–447 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Raich, A.S.: Compactness of the complex Green operator on CR-manifolds of hypersurface type. Math. Ann. 348, 81–117 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Raich, A.S., Straube, E.J.: Compactness of the complex Green operator. Math. Res. Lett. 15(4), 761–778 (2008)

  37. Range, R.M.: Holomorphic functions and integral representations in several complex variables. Graduate Texts in Mathematics, vol. 108. Springer, Berlin (1986)

  38. Range, R.M.: Extension phenomena in multidimensional complex analysis: correction of the historical record. Math. Intell. 24(2), 4–12 (2002)

    Article  MathSciNet  Google Scholar 

  39. Straube, E.J.: Lectures on the \({{\cal L}}^{2}\)-Sobolev Theory of the \(\overline{\partial }\)-Neumann Problem. ESI Lectures in Mathematics and Physics. European Mathematical Society, Zürich (2010)

  40. Straube, E.J.: The complex Green operator on CR-submanifolds of \({\mathbb{C}}^{n}\) of hypersurface type: compactness. Trans. Am. Math. Soc. 364(8), 4107–4125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Straube, E.J., Sucheston, M.K.: Plurisubharmonic defining functions, good vector fields, and exactness of a certain one form. Monatsh. f. Mathematik 136, 249–258 (2002)

  42. Tanaka, N.: A differential geometric study on strongly-pseudoconvex manifolds. Lectures in Mathematics. Kyoto University, Tokyo (1975)

    Google Scholar 

  43. Tumanov, A.: Connections and propagation of analyticity for CR functions. Duke Math. J. 73(1), 1–24 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tumanov, A.: On the propagation of extendibility of CR functions. Complex analysis and geometry (Trento, 1993), 479–498. Lecture Notes in Pure and Applied Mathematics, vol. 173, Dekker, New York (1996)

Download references

Acknowledgments

The authors are grateful for very useful correspondence from Joseph Kohn and Andreea Nicoara concerning estimates for \(\overline{\partial }_{M}\) and \(\overline{\partial }_{M}^{*}\) in [29, 32], and from Alex Tumanov concerning the construction of the ‘strip’ manifold \(\widehat{M}\) via analytic discs. They also thank C. Denson Hill for a discussion on finite dimensionality vs. triviality of cohomology groups that led them to reference [11]. Finally, they thank the referee for very helpful comments on the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunus E. Zeytuncu.

Additional information

Research supported in part by NSF grant DMS 0758534.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straube, E.J., Zeytuncu, Y.E. Sobolev estimates for the complex Green operator on CR submanifolds of hypersurface type. Invent. math. 201, 1073–1095 (2015). https://doi.org/10.1007/s00222-014-0564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0564-6

Mathematics Subject Classification

Navigation