Skip to main content
Log in

Supersingular K3 surfaces are unirational

  • Published:
Inventiones mathematicae Aims and scope

A Correction to this article was published on 01 February 2021

This article has been updated

Abstract

We show that supersingular K3 surfaces in characteristic \(p\ge 5\) are related by purely inseparable isogenies. This implies that they are unirational, which proves conjectures of Artin, Rudakov, Shafarevich, and Shioda. As a byproduct, we exhibit the moduli space of rigidified K3 crystals as an iterated \({{\mathbb P}}^1\)-bundle over \({{\mathbb F}}_{p^2}\). To complete the picture, we also establish Shioda–Inose type isogeny theorems for K3 surfaces with Picard rank \(\rho \ge 19\) in positive characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Artin, M.: Algebraization of Formal Moduli: I, Global Analysis (papers in honor of K. Kodaira). University of Tokyo Press, Tokyo, pp. 21–71 (1969)

  2. Artin, M.: Supersingular K3 surfaces. Ann. Sci. École Norm. Sup. 4(7), 543–567 (1974)

    MathSciNet  Google Scholar 

  3. Artin, M.: Algebraic construction of Brieskorn’s resolutions. J. Algebra 29, 330–348 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. Artin, M., Mazur, B.: Formal groups arising from algebraic varieties. Ann. Sci. École Norm. Sup. 10, 87–131 (1977)

    MATH  MathSciNet  Google Scholar 

  5. Artin, M., Swinnerton-Dyer, H.P.F.: The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces. Invent. Math. 20, 249–266 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bombieri, E., Mumford, D.: Enriques’ classification of surfaces in char. p, III. Invent. Math. 35, 197–232 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Charles, F.: The Tate conjecture for K3 surfaces over finite fields. Invent. Math. 194, 119–145 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, X.: Self rational maps of K3 surfaces. arXiv:1008.1619 (2010)

  9. Cossec, F.R., Dolgachev, I.V.: Enriques Surfaces I, Progress in Mathematics, vol. 76. Birkhäuser, Basel (1989)

  10. Conrad, B., Lieblich, M., Olsson, M., Martin: Nagata compactification for algebraic spaces. J. Inst. Math. Jussieu 11, 747–814 (2012)

  11. Cynk, S., van Straten, D.: Small resolutions and non-liftable Calabi–Yau threefolds. Manuscr. Math. 130, 233–249 (2009)

    Article  MATH  Google Scholar 

  12. Deligne, P.: Relèvement des surfaces K3 en caractéristique nulle, Lecture Notes in Math. 868, Algebraic surfaces (Orsay, 1976–78), pp. 58–79. Springer, New York (1981)

  13. Dolgachev, I.V., Keum, J.: Finite groups of symplectic automorphisms of K3 surfaces in positive characteristic. Ann. Math. 2(169), 269–313 (2009)

    Article  MathSciNet  Google Scholar 

  14. Ekedahl, T.: Foliations and inseparable morphisms, Algebraic geometry, Bowdoin 1985, Proc. Sympos. Pure Math., vol. 46, pp. 139–149 (1987)

  15. Ekedahl, T., van der Geer, G.: Cycle Classes on the moduli of K3 surfaces in positive characteristic. arXiv:1104.3024 (2011)

  16. Huybrechts, D.: Compact hyperkähler manifolds, Calabi–Yau manifolds and related geometries (Nordfjordeid, 2001), pp. 161–225. Springer, New York (2003)

  17. Igusa, J.I.: Betti and Picard numbers of abstract algebraic surfaces. Proc. Natl. Acad. Sci. USA 46, 724–726 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  18. Illusie, L.: Complexe de de Rham–Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. 12, 501–661 (1979)

    MATH  MathSciNet  Google Scholar 

  19. Illusie, L.: Grothendieck’s existence theorem in formal geometry, Math. Surveys Monogr., vol. 123. Fundamental algebraic geometry, pp. 179–233. AMS, Providence (2005)

  20. Inose, H.: Defining equations of singular K3 surfaces and a notion of isogeny. In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pp. 495–502. Kinokuniya Book Store (1978)

  21. Ito, H., Liedtke, C.: Elliptic K3 surfaces with \(p^n\)-torsion sections. J. Algebr. Geom. 22, 105–139 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jang, J.: Néron–Severi group preserving lifting of K3 surfaces and applications. arXiv:1306.1596 (2013)

  23. Katsura, T.: Generalized Kummer surfaces and their unirationality in characteristic \(p\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, 1–41 (1987)

  24. Kleiman, S.L.: Toward a numerical theory of ampleness. Ann. Math. 2(84), 293–344 (1966)

    Article  MathSciNet  Google Scholar 

  25. Kleiman, S.L.: The Picard scheme, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, pp. 235–321. AMS (2005)

  26. Kondo, S., Shimada, I.: On certain duality of Néron-Severi lattices of supersingular K3 surfaces and its application to generic supersingular K3 surfaces. arXiv:1212.0269 (2012)

  27. Lieblich, M., Maulik, D.: A note on the cone conjecture for K3 surfaces in positive characteristic. arXiv:1102.3377 (2011)

  28. Lieblich, M.: On the Ubiquity of Twisted Sheaves, Birational Geometry, Rational Curves, and Arithmetic, pp. 205–227. Springer, New York (2013)

  29. Lieblich, M.: On the Unirationality of Supersingular K3 Surfaces. arXiv:1403.3073 (2014)

  30. Liedtke, C.: Algebraic surfaces of general type with small \(c_1^2\) in positive characteristic. Nagoya Math. J. 191, 111–134 (2008)

    MATH  MathSciNet  Google Scholar 

  31. Ma, S.: On K3 surfaces which dominate Kummer surfaces. Proc. Am. Math. Soc. 141, 131–137 (2013)

    Article  MATH  Google Scholar 

  32. Madapusi Pera, K.: The Tate conjecture for K3 surfaces in odd characteristic. arXiv:1301.6326 (2013)

  33. Markman, E.: Lagrangian fibrations of holomorphic-symplectic varieties of \({\rm K3}^{[n]}\)-type. arXiv:1301.6584 (2013)

  34. Matsusaka, T., Mumford, D.: Two fundamental theorems on deformations of polarized varieties. Am. J. Math. 86, 668–684 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  35. Maulik, D.: Supersingular K3 surfaces for large primes. arXiv:1203.2889 (2012)

  36. Morrison, D.R.: On K3 surfaces with large Picard number. Invent. Math. 75, 105–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  37. Morrison, D.R.: Isogenies between algebraic surfaces with geometric genus one. Tokyo J. Math. 10, 179–187 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mukai, S.: On the moduli space of bundles on K3 surfaces. I, Vector bundles on algebraic varieties (Bombay: 341–413). Tata Inst. Fund. Res. Stud. Math. 11, 1987 (1984)

  39. Nikulin, V.V.: Finite automorphism groups of Kähler K3 surfaces. Trans. Moscow Math. Soc. 38, 75–135 (1980)

    MathSciNet  Google Scholar 

  40. Nikulin, V.V.: On correspondences between surfaces of K3 type. Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987) [translation in Math. USSR-Izv. 30, 375–383 (1988)]

  41. Nikulin, V.V.: On rational maps between K3 surfaces, Constantin Carathéodory: an international tribute, vols. I, II, pp. 964–995. World Sci. Publ. (1991)

  42. Nygaard, N.O.: The Tate conjecture for ordinary K3 surfaces over finite fields. Invent. Math. 74, 213–237 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  43. Ogus, A.: Supersingular K3 crystals, Journées de Géométrie Algébrique de Rennes, Vol. II. Astérisque 64, 3–86 (1979)

    MATH  MathSciNet  Google Scholar 

  44. Ogus, A.: A Crystalline Torelli Theorem for Supersingular K3 Surfaces, Arithmetic and Geometry, vol. II, Progress in Mathematics, vol. 36, pp. 361–394. Birkhäuser, Basel (1983)

  45. Pho, D.T., Shimada, I.: Unirationality of certain supersingular K3 surfaces in characteristic 5. Manuscr. Math. 121, 425–435 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Rudakov, A.N., Shafarevich, I.R.: Supersingular K3 surfaces over fields of characteristic 2. Izv. Akad. Nauk SSSR 42, 848–869 (1978) [Math. USSR, Izv. 13, 147–165 (1979)]

  47. Rudakov, A.N., Shafarevich, I.R.: Surfaces of Type K3 Over Fields of Finite Characteristic, Current Problems in Mathematics, vol. 18, pp. 115–207. Akad. Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, Nauk SSSR (1981)

  48. Rudakov, A.N., Shafarevich, I.R.: On the degeneration of K3 surfaces over fields of finite characteristic. Math. USSR Izv. 18, 561–574 (1982)

    Article  MATH  Google Scholar 

  49. Shafarevich, I.R.: Le théorème de Torelli pour les surfaces algébriques de type K3, ICM Nice 1970, vol. 1, pp. 413–417. Gauthier-Villars (1971)

  50. Shioda, T.: Algebraic cycles on certain K3 surfaces in characteristic p, Manifolds-Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), pp. 357–364. University of Tokyo Press, Tokyo (1975)

  51. Shioda, T.: An example of unirational surfaces in characteristic p. Math. Ann. 211, 233–236 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  52. Shioda, T.: Some results on unirationality of algebraic surfaces. Math. Ann. 230, 153–168 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  53. Shioda, T.: Supersingular K3 Surfaces. Algebraic Geometry, Springer Lecture Notes, vol. 732, pp. 564–591 (1979)

  54. Shioda, T., Inose, H.: On Singular K3 Surfaces, Complex Analysis and Algebraic Geometry, pp. 119–136. Iwanami Shoten, Tokyo (1977)

  55. Tate, J.: Algebraic Cycles and Poles of Zeta Functions, Arithmetic Algebraic Geometry, Harper and Row, pp. 93–110 (1965)

  56. Verbitsky, M.: Degenerate twistor spaces for hyperkähler manifolds. arXiv:1311.5073 (2013)

  57. Zink, T.: Cartiertheorie kommutativer formaler Gruppen, Teubner (1984)

Download references

Acknowledgments

It is a pleasure for me to thank Xi Chen, Igor Dolgachev, Gerard van der Geer, Brendan Hassett, Daniel Huybrechts, Toshiyuki Katsura, Frans Oort, Matthias Schütt, Tetsuji Shioda, Burt Totaro for discussions, comments, and pointing out inaccuracies. I especially thank Olivier Benoist and Max Lieblich for pointing out mistakes in earlier versions of Sect. 3, and for helping me to fix them. Finally, I thank the referee for careful proof-reading, for pointing out inaccuracies, and for helping me to improve the whole exposition. I gratefully acknowledge funding from DFG via Transregio SFB 45, as part of this article was written while staying at Bonn university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Liedtke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liedtke, C. Supersingular K3 surfaces are unirational. Invent. math. 200, 979–1014 (2015). https://doi.org/10.1007/s00222-014-0547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0547-7

Mathematics Subject Classification

Navigation