Skip to main content
Log in

On the connectivity of the Julia sets of meromorphic functions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that every transcendental meromorphic map \(f\) with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Conformal Invariants. AMS Chelsea Publishing, Providence. Topics in geometric function theory, Reprint of the 1973 original, With a foreword by Peter Duren. Frederick W, Gehring and Brad Osgood (2010)

  2. Baker, I.N.: The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I Math. 1(2), 277–283 (1975)

    Google Scholar 

  3. Baker, I.N., Domínguez, P.: Analytic self-maps of the punctured plane. Complex Var. Theory Appl. 37(1–4), 67–91 (1998)

    Article  Google Scholar 

  4. Baker, I.N., Kotus, J., Yinian, L.: Iterates of meromorphic functions. I. Ergodic Theory Dynam. Syst. 11(2), 241–248 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baker, I.N., Pommerenke, C.: On the iteration of analytic functions in a halfplane. II. J. Lond. Math. Soc. (2) 20(2), 255–258 (1979)

    Google Scholar 

  6. Barański, K., Fagella, N.: Univalent Baker domains. Nonlinearity 14(3), 411–429 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bergweiler, W.: Iteration of meromorphic functions. Bull. Am. Math. Soc. (N.S.) 29(2), 151–188 (1993)

    Google Scholar 

  8. Bergweiler, W.: Newton’s method and Baker domains. J. Differ. Equ. Appl. 16(5–6), 427–432 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bergweiler, W., Drasin, D., Langley, J.K.: Baker domains for Newton’s method. Ann. Inst. Fourier (Grenoble) 57(3), 803–814 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bergweiler, W., Terglane, N.: Weakly repelling fixpoints and the connectivity of wandering domains. Trans. Am. Math. Soc. 348(1), 1–12 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Buff, X.: Virtually repelling fixed points. Publ. Mat. 47(1), 195–209 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Buff, X., Rückert, J.: Virtual immediate basins of Newton maps and asymptotic values. Int. Math. Res. Not., pages Art. ID 65498, 18 (2006)

    Google Scholar 

  13. Carleson, L., Gamelin, T.W.: Complex dynamics. In: Universitext, Tracts in Mathematics. Springer, New York (1993)

  14. Cowen, C.C.: Iteration and the solution of functional equations for functions analytic in the unit disk. Trans. Am. Math. Soc. 265(1), 69–95 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Domínguez, P.: Dynamics of transcendental meromorphic functions. Ann. Acad. Sci. Fenn. Math. 23(1), 225–250 (1998)

    MathSciNet  Google Scholar 

  16. Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18(2), 287–343 (1985)

    Google Scholar 

  17. Fagella, N., Henriksen, C.: Deformation of entire functions with Baker domains. Discrete Contin. Dyn. Syst. 15(2), 379–394 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fagella, N., Henriksen, C.: The Teichmüller space of an entire function. In: Complex Dynamics, pp. 297–330. A K Peters, Wellesley (2009)

  19. Fagella, N., Jarque, X., Taixés, J.: On connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed points. I. Proc. Lond. Math. Soc. (3) 97(3), 599–622 (2008)

    Google Scholar 

  20. Fagella, N., Jarque, X., Taixés, J.: On connectivity of Julia sets of transcendental meromorphic maps and weakly repelling fixed points II. Fund. Math. 215(2), 177–202 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fatou, P.: Sur les équations fonctionnelles. Bull. Soc. Math. France 47, 161–271 (1919)

    MATH  MathSciNet  Google Scholar 

  22. Haruta, M.E.: Newton’s method on the complex exponential function. Trans. Am. Math. Soc. 351(6), 2499–2513 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hubbard, J.H., Schleicher, D., Sutherland, S.: How to find all roots of complex polynomials by Newton’s method. Invent. Math. 146(1), 1–33 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Julia, G.: Mémoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. (8) 1, 47–245 (1918)

    Google Scholar 

  25. König, H.: Conformal conjugacies in Baker domains. J. Lond. Math. Soc. (2) 59(1), 153–170 (1999)

    Google Scholar 

  26. Manning, A.: How to be sure of finding a root of a complex polynomial using Newton’s method. Bol. Soc. Brasil. Mat. (N.S.) 22(2), 157–177 (1992)

    Google Scholar 

  27. Marden, A., Pommerenke, C.: Analytic self-mappings of infinite order of Riemann surfaces. J. Analyse Math. 37, 186–207 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mayer, S., Schleicher, D.: Immediate and virtual basins of Newton’s method for entire functions. Ann. Inst. Fourier (Grenoble) 56(2), 325–336 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. McMullen, C.T.: Families of rational maps and iterative root-finding algorithms. Ann. Math. (2) 125(3), 467–493 (1987)

    Google Scholar 

  30. McMullen, C.T.: Braiding of the attractor and the failure of iterative algorithms. Invent. Math. 91(2), 259–272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  31. Milnor, J.: Dynamics in one complex variable. In: Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton (2006)

  32. Pommerenke, C.: On the iteration of analytic functions in a halfplane. J. Lond. Math. Soc. (2) 19(3), 439–447 (1979)

    Google Scholar 

  33. Przytycki, F.: Remarks on the simple connectedness of basins of sinks for iterations of rational maps. In: Dynamical Systems and Ergodic Theory (Warsaw, 1986), vol. 23, pp. 229–235. Banach Center Publ., PWN, Warsaw (1989)

  34. Rippon, P.J.: Baker domains of meromorphic functions. Ergodic Theory Dynam. Syst. 26(4), 1225–1233 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rippon, P.J., Stallard, G.M.: Singularities of meromorphic functions with Baker domains. Math. Proc. Cambridge Philos. Soc. 141(2), 371–382 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Roesch, P.: Puzzles de Yoccoz pour les applications à allure rationnelle. Enseign. Math. (2) 45(1–2), 133–168 (1999)

  37. Rückert, J., Schleicher, D.: On Newton’s method for entire functions. J. Lond. Math. Soc. (2) 75(3), 659–676 (2007)

    Google Scholar 

  38. Schleicher, D.: Dynamics of entire functions. In: Holomorphic Dynamical Systems. Lecture Notes in Math., vol. 1998, pp. 295–339. Springer, Berlin (2010)

  39. Shishikura, M.: On the quasiconformal surgery of rational functions. Ann. Sci. École Norm. Sup. (4) 20(1), 1–29 (1987)

    Google Scholar 

  40. Shishikura, M.: The connectivity of the Julia set and fixed points. In: Complex Dynamics, pp. 257–276. A K Peters, Wellesley (2009)

  41. Sullivan, D.: Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains. Ann. of Math. (2) 122(3), 401–418 (1985)

    Google Scholar 

  42. Tan, L.: Branched coverings and cubic Newton maps. Fund. Math. 154(3), 207–260 (1997)

    MATH  MathSciNet  Google Scholar 

  43. Whyburn, G.T.: Analytic Topology. American Mathematical Society Colloquium Publications, vol. XXVIII. American Mathematical Society, Providence (1963)

Download references

Acknowledgments

We wish to thank the Institut de Matemàtiques de la Universitat de Barcelona for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Fagella.

Additional information

K. Barański is partially supported by Polish NCN Grant N N201 607940. N. Fagella and X. Jarque were partially supported by the Catalan grant 2009SGR-792, and by the Spanish Grants MTM-2006-05849 and MTM-2008-01486 Consolider (including a FEDER contribution) and MTM2011-26995-C02-02. B. Karpińska is partially supported by Polish NCN Grant N N201 607940 and Polish PW Grant 504G 1120 0011 000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barański, K., Fagella, N., Jarque, X. et al. On the connectivity of the Julia sets of meromorphic functions. Invent. math. 198, 591–636 (2014). https://doi.org/10.1007/s00222-014-0504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0504-5

Mathematics Subject Classification (2000)

Navigation