Skip to main content
Log in

Self-adjoint commuting ordinary differential operators

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In this paper we study self-adjoint commuting ordinary differential operators of rank two. We find sufficient conditions when an operator of fourth order commuting with an operator of order 4g+2 is self-adjoint. We introduce an equation on potentials V(x),W(x) of the self-adjoint operator \(L=(\partial_{x}^{2}+V)^{2}+W\) and some additional data. With the help of this equation we find the first example of commuting differential operators of rank two corresponding to a spectral curve of higher genus. These operators have polynomial coefficients and define commutative subalgebras of the first Weyl algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wallenberg, G.: Über die Vertauschbarkeit homogener linearer Differentialausdrücke. Arch. Math. Phys. 4, 252–268 (1903)

    MATH  Google Scholar 

  2. Schur, J.: Über vertauschbare lineare Differentialausdrücke. Sitzungsber. Berl. Math. Ges. 4, 2–8 (1905)

    Google Scholar 

  3. Burchnall, J.L., Chaundy, I.W.: Commutative ordinary differential operators. Proc. Lond. Math. Soc. Ser. 2. 21, 420–440 (1923)

    Article  MATH  Google Scholar 

  4. Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11(1), 12–26 (1977)

    Article  MATH  Google Scholar 

  5. Krichever, I.M.: Commutative rings of ordinary linear differential operators. Funct. Anal. Appl. 12(3), 175–185 (1978)

    Article  MathSciNet  Google Scholar 

  6. Drinfeld, V.G.: Commutative subrings of certain noncommutative rings. Funct. Anal. Appl. 11(3), 9–12 (1977)

    Article  MathSciNet  Google Scholar 

  7. Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations. In: Nagata, M. (ed.) Proceedings Int. Symp. Algebraic Geometry, Kyoto, 1977, pp. 115–153. Kinokuniya Book Store, Tokyo (1978)

    Google Scholar 

  8. Krichever, I.M., Novikov, S.P.: Holomorphic bundles over Riemann surfaces and the Kadomtsev-Petviashvili equation. I. Funct. Anal. Appl. 12(4), 276–286 (1978)

    Article  MathSciNet  Google Scholar 

  9. Krichever, I.M., Novikov, S.P.: Holomorphic bundles over algebraic curves and nonlinear equations. Russ. Math. Surv. 35(6), 47–68 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grinevich, P.G., Novikov, S.P.: Spectral theory of commuting operators of rank two with periodic coefficients. Funct. Anal. Appl. 16(1), 19–20 (1982)

    Article  MATH  Google Scholar 

  11. Grinevich, P.G.: Rational solutions for the equation of commutation of differential operators. Funct. Anal. Appl. 16(1), 15–19 (1982)

    Article  MATH  Google Scholar 

  12. Grunbaum, F.: Commuting pairs of linear ordinary differential operators of orders four and six. Physica D 31(3), 424–433 (1988)

    Article  MathSciNet  Google Scholar 

  13. Latham, G.: Rank 2 commuting ordinary differential operators and Darboux conjugates of KdV. Appl. Math. Lett. 8(6), 73–78 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Latham, G., Previato, E.: Darboux transformations for higher-rank Kadomtsev-Petviashvili and Krichever-Novikov equations. Acta Appl. Math. 39, 405–433 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mokhov, O.I.: On commutative subalgebras of Weyl algebra, which are associated with an elliptic curve. In: International Conference on Algebra in Memory of A.I. Shirshov (1921–1981), Barnaul, USSR, 20–25 August, p. 85 (1991). Reports on theory of rings, algebras and modules

    Google Scholar 

  16. Mokhov, O.I.: On the commutative subalgebras of Weyl algebra, which are generated by the Chebyshev polynomials. In: Third International Conference on Algebra in Memory of M.I. Kargapolov (1928–1976), Krasnoyarsk, Russia, 23–28 August 1993, p. 421. Inoprof, Krasnoyarsk (1993)

    Google Scholar 

  17. Previato, E., Wilson, G.: Differential operators and rank 2 bundles over elliptic curves. Compos. Math. 81(1), 107–119 (1992)

    MATH  MathSciNet  Google Scholar 

  18. Dehornoy, P.: Opérateurs différentiels et courbes elliptiques. Compos. Math. 43(1), 71–99 (1981)

    MATH  MathSciNet  Google Scholar 

  19. Mokhov, O.I.: Commuting differential operators of rank 3 and nonlinear differential equations. Math. USSR, Izv. 35(3), 629–655 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mironov, A.E.: A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2. Sb. Math. 195(5), 711–722 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mironov, A.E.: On commuting differential operators of rank 2. Sib. Electron. Math. Rep. 6, 533–536 (2009)

    MATH  MathSciNet  Google Scholar 

  22. Mironov, A.E.: Commuting rank 2 differential operators corresponding to a curve of genus 2. Funct. Anal. Appl. 39(3), 240–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zuo, D.: Commuting differential operators of rank 3 associated to a curve of genus 2. SIGMA 8, 044 (2012)

    Google Scholar 

  24. Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties. Usp. Mat. Nauk 31:1(187), 55–136 (1976)

    MATH  MathSciNet  Google Scholar 

  25. Dixmier, J.: Sur les algèbres de Weyl. Bull. Soc. Math. Fr. 96, 209–242 (1968)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to I.M. Krichever, O.I. Mokhov, S.P. Novikov and V.V. Sokolov for valuable discussions and stimulating interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey E. Mironov.

Additional information

This paper was completed in the Hausdorff Research Institute for Mathematics (Bonn). The author is grateful to the Institute for hospitality. This work was also partially supported by grant 12-01-33058 from the Russian Foundation for Basic Research; grant MD-5134.2012.1 from the President of Russia; and a grant from Dmitri Zimin’s “Dynasty” foundation.

Appendix

Appendix

In this Appendix we study (23).

Lemma 5

There exists a Zariski open set UC 4 such that for every (α 0,…,α 3)∈U polynomial F g (z) has no multiple roots of order greater than two.

Proof

To prove the lemma we represent F g in the form

$$F_g(z)=F_g^0(z)+\alpha_3F_g^1(z)+O\bigl(\alpha_3^2\bigr), $$

and prove that \(F_{g}^{0}(z)\) has g double roots and one simple root.

Let us consider (20)–(22). We put \(\delta_{g}=\alpha_{3}^{g}\), then

$$\delta_{g-1}=\alpha_3^{g-1}\frac{\alpha_2g^2+z}{2g-1}. $$

Moreover, from (20) it follows that Q has the form

$$\begin{aligned} Q =&\alpha_3^gx^g+\dots+ \alpha_3^sx^s\bigl(p_{s}+\alpha_3q_{s}+O\bigl(\alpha_3^2\bigr)\bigr)+\cdots \\ &{}+\bigl(p_{0}+\alpha_3q_{0}+O\bigl(\alpha_3^2\bigr)\bigr) \end{aligned}$$
(24)

for some p i =p i (z),q i =q i (z). Let us note that from (22) it follows that

$$p_g=1,\qquad p_{g-1}=\frac{\alpha_2g^2+z}{2g-1},\qquad q_g=0,\qquad q_{g-1}=0. $$

Let us substitute (24) into (15). We get

$$F_g(z)=p_0^2(z)z+\alpha_3p_0(z)\bigl(\alpha_1p_1(z)+2q_0(z)z\bigr)+O\bigl(\alpha_3^2\bigr), $$

so,

$$F_g^0(z)=p_0^2(z)z,\qquad F_g^1(z)=p_0(z)\bigl(\alpha_1p_1(z)+2q_0(z)z\bigr). $$

Let us find p i . For this we again substitute (24) into (19) and find the coefficients at \(\alpha_{3}^{i+1}x^{i}\). These coefficients must be equal to zero. This gives us

$$p_i=\frac{2(i+1)(\alpha_2(i+1)^2+z)}{(2i+1)(g^2+g-i^2-i)}p_{i+1},\quad 0\leq i\leq g-1. $$

Hence

$$p_i(z)=\bigl(\alpha_2(i+1)^2+z\bigr)\cdots\bigl(\alpha_2g^2+z\bigr)A_i,\quad 0\leq i\leq g-1, $$

where A i is a constant. Lemma 5 is proved. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, A.E. Self-adjoint commuting ordinary differential operators. Invent. math. 197, 417–431 (2014). https://doi.org/10.1007/s00222-013-0486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0486-8

Mathematics Subject Classification (2010)

Navigation