Skip to main content
Log in

On the Davenport–Heilbronn theorems and second order terms

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We give simple proofs of the Davenport–Heilbronn theorems, which provide the main terms in the asymptotics for the number of cubic fields having bounded discriminant and for the number of 3-torsion elements in the class groups of quadratic fields having bounded discriminant. We also establish second main terms for these theorems, thus proving a conjecture of Roberts. Our arguments provide natural interpretations for the various constants appearing in these theorems in terms of local masses of cubic rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We thank Franz Lemmermeyer for pointing out to us that the basic ideas of this correspondence were already essentially contained in the work of Levi [24] in 1914! See also the 1926 work of Delone [16].

  2. We follow here the convention that, for e≤0, we have a≡0 (mod p e) for any integer a.

References

  1. Belabas, K.: A fast algorithm to compute cubic fields. Math. Comput. 66(219), 1213–1237 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belabas, K.: On the mean 3-rank of quadratic fields. Compos. Math. 118(1), 1–9 (1999). Corrigendum: On the mean 3-rank of quadratic fields. Compos. Math. 140, 1221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belabas, K., Fouvry, E.: Sur le 3-rang des corps quadratiques de discriminant premier ou presque premier. Duke Math. J. 98(2), 217–268 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belabas, K., Bhargava, M., Pomerance, C.: Error terms for the Davenport-Heilbronn theorems. Duke Math. J. 153, 173–210 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhargava, M.: The density of discriminants of quartic rings and fields. Ann. Math. 162, 1031–1063 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhargava, M.: Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants. Internat. Math. Res. Not. 2007(17), rnm052 (2007), 20 pp.

    MathSciNet  Google Scholar 

  7. Bhargava, M.: The density of discriminants of quintic rings and fields. Ann. Math. 172, 1559–1591 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhargava, M., Shnidman, A.: On the number of cubic orders of bounded discriminant having automorphic group C 3, and related problems. Preprint

  9. Bhargava, M., Stich, S.: On mass formulae for algebras over \(\mathbb{F}_{p}\) and over ℤ p . In preparation

  10. Bhargava, M., Wood, M.M.: The density of discriminants of S 3-sextic number fields. Proc. Am. Math. Soc. 136(5), 1581–1587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Datskovsky, B., Wright, D.J.: Density of discriminants of cubic extensions. J. Reine Angew. Math. 386, 116–138 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Davenport, H.: On a principle of Lipschitz. J. Lond. Math. Soc. 26, 179–183 (1951). Corrigendum: On a principle of Lipschitz. J. Lond. Math. Soc. 39, 580 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davenport, H.: On the class-number of binary cubic forms I. J. Lond. Math. Soc. 26, 183–192 (1951). Corrigendum, ibidem, 27, 512 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davenport, H.: On the class-number of binary cubic forms II. J. Lond. Math. Soc. 26, 192–198 (1951)

    Article  MathSciNet  Google Scholar 

  15. Davenport, H., Heilbronn, H.: On the density of discriminants of cubic fields II. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 322(1551), 405–420 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delone, B.N.: Solution of the problem of equivalence and tabulation of cubic binary forms with negative discriminant. Z̆. Leningr. Fiz.-Mat. Obs̆c̆. 1(1), 40–55 (1926). (Russian)

    Google Scholar 

  17. Delone, B.N., Faddeev, D.K.: The theory of irrationalities of the third degree. AMS Transl. Math. Monogr. 10 (1964)

  18. Duke, W., Kowalski, E.: A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations (with an appendix by Dinakar Ramakrishnan). Invent. Math. 139(1), 1–39 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fouvry, E., Katz, N.: A general stratification theorem for exponential sums, and applications. J. Reine Angew. Math. 540, 115–166 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Fung, G.W., Williams, H.C.: On the computation of a table of complex cubic fields with discriminant D>−106. Math. Comput. 55(191), 313–325 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Gan, W.-T., Gross, B.H., Savin, G.: Fourier coefficients of modular forms on G 2. Duke Math. J. 115, 105–169 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hilbert, D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge (1993). (Translated by R. Laubenbacher)

    MATH  Google Scholar 

  23. Knapp, A.W.: Lie groups beyond an introduction. 2nd edn. Progress in Mathematics, vol. 140. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  24. Levi, F.: Kubische Zahlkörper und binäre kubische Formenklassen. Sitz.ber. Sachs. Akad. Wiss. Leipz., Mat.-Nat. Kl. 66, 26–37 (1914)

    Google Scholar 

  25. Llorente, P., Quer, J.: On totally real cubic fields with discriminant D<107. Math. Comput. 50(182), 581–594 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Roberts, D.P.: Density of cubic field discriminants. Math. Comput. 70(236), 1699–1705 (2001) (electronic)

    MATH  Google Scholar 

  27. Sato, M., Shintani, T.: On zeta functions associated with prehomogeneous vector spaces. Ann. Math. (2) 100, 131–170 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Serre, J.-P.: A Course in Arithmetic. Graduate Texts in Mathematics, vol. 7. Springer, New York (1973). (Translated from the French)

    Book  MATH  Google Scholar 

  29. Serre, J.-P.: Une “formule de masse” pour les extensions totalement ramifiées de degré donné d’un corps local. C. R. Acad. Sci. Paris Ser. A-B 286(22), A1031–A1036 (1978)

    Google Scholar 

  30. Shintani, T.: On Dirichlet series whose coefficients are class-numbers of integral binary cubic forms. J. Math. Soc. Jpn. 24, 132–188 (1972)

    Article  MathSciNet  Google Scholar 

  31. Taniguchi, T., Thorne, F.: Secondary terms in counting functions for cubic fields. Preprint

  32. Vatsal, V.: Rank-one twists of a certain elliptic curve. Math. Ann. 311, 791–794 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wong, S.: Elliptic curves and class number divisibility. Internat. Math. Res. Notices 1999(12), 661–672

Download references

Acknowledgements

We thank Mohammad Bardestani, Karim Belabas, Andrew Granville, Piper Harris, Carl Pomerance, Peter Sarnak, Christopher Skinner, Frank Thorne, Ila Varma, Melanie Wood, and the anonymous referees for helpful comments on earlier versions of this manuscript. We are also grateful to Boris Alexeev and Sucharit Sarkar for helping us compute the precise values of the second main terms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjul Bhargava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, M., Shankar, A. & Tsimerman, J. On the Davenport–Heilbronn theorems and second order terms. Invent. math. 193, 439–499 (2013). https://doi.org/10.1007/s00222-012-0433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0433-0

Keywords

Navigation