Skip to main content
Log in

Finite Hilbert stability of (bi)canonical curves

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that a generic canonically or bicanonically embedded smooth curve has semistable mth Hilbert points for all m≥2. We also prove that a generic bicanonically embedded smooth curve has stable mth Hilbert points for all m≥3. In the canonical case, this is accomplished by proving finite Hilbert semistability of special singular curves with \(\mathbb{G}_{m}\)-action, namely the canonically embedded balanced ribbon and the canonically embedded balanced double A 2k+1-curve. In the bicanonical case, we prove finite Hilbert stability of special hyperelliptic curves, namely Wiman curves. Finally, we give examples of canonically embedded smooth curves whose mth Hilbert points are non-semistable for low values of m, but become semistable past a definite threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alper, J., Fedorchuk, M., Smyth, D.I.: Singularities with \(\mathbb{G}_{m}\)-action and the log minimal model program for \(\overline{M}_{g}\) (2010). arXiv:1010.3751v2 [math.AG]

  2. Barja, M.A.: On the slope of bielliptic fibrations. Proc. Am. Math. Soc. 129(7), 1899–1906 (2001) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayer, D., Eisenbud, D.: Ribbons and their canonical embeddings. Trans. Am. Math. Soc. 347(3), 719–756 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 4, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  5. Cornalba, M., Harris, J.: Divisor classes associated to families of stable varieties, with applications to the moduli space of curves. Ann. Sci. Ec. Norm. Super. (4) 21(3), 455–475 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Fedorchuk, M.: The final log canonical model of the moduli space of stable curves of genus 4. Int. Math. Res. Not. (2012). doi:10.1093/imrn/rnr242

    Google Scholar 

  7. Fedorchuk, M., Jensen, D.: Stability of 2nd Hilbert points of canonical curves. Int. Math. Res. Not. (in press). arXiv:1111.5339v2 [math.AG]

  8. Fong, L.-Y.: Rational ribbons and deformation of hyperelliptic curves. J. Algebr. Geom. 2(2), 295–307 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Fedorchuk, M., Smyth, D.I.: Alternate compactifications of moduli spaces of curves. In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli (in press). arXiv:1012.0329v2 [math.AG]

  10. Gieseker, D.: Lectures on Moduli of Curves. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 69. Tata Institute of Fundamental Research, Bombay (1982)

    MATH  Google Scholar 

  11. Gieseker, D.: Geometric invariant theory and applications to moduli problems. In: Invariant Theory. Proceedings of the 1st 1982 Session of the Centro Internazionale Matematico Estivo (CIME), Montecatini, June 10–18, 1982. Lecture Notes in Mathematics, vol. 996, pages v+159. Springer, Berlin (1983)

    Google Scholar 

  12. Harris, J.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992). A first course

    Book  Google Scholar 

  13. Hassett, B., Hyeon, D.: Log minimal model program for the moduli space of curves: the first flip (2008). arXiv:0806.3444 [math.AG]

  14. Hassett, B., Hyeon, D.: Log canonical models for the moduli space of curves: the first divisorial contraction. Trans. Am. Math. Soc. 361(8), 4471–4489 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hyeon, D., Lee, Y.: Log minimal model program for the moduli space of stable curves of genus three. Math. Res. Lett. 17(4), 625–636 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Hyeon, D., Morrison, I.: Stability of tails and 4-canonical models. Math. Res. Lett. 17(4), 721–729 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Kempf, G.R.: Instability in invariant theory. Ann. Math. (2) 108(2), 299–316 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kollár, J.: Rational Curves on Algebraic Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 32 [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (1996)

    Book  Google Scholar 

  19. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, 3rd edn. [Results in Mathematics and Related Areas (2)]. Springer, Berlin (1994)

    Book  Google Scholar 

  20. Morrison, I.: GIT constructions of moduli spaces of stable curves and maps. In: Surveys in Differential Geometry. Vol. XIV. Geometry of Riemann Surfaces and Their Moduli Spaces, vol. 14, pp. 315–369. Int. Press, Somerville (2009)

    Google Scholar 

  21. Morrison, I., Swinarski, D.: Groebner techniques for low degree Hilbert stability. Exp. Math. 20(1), 34–56 (2011)

    Article  MathSciNet  Google Scholar 

  22. Mumford, D.: Stability of projective varieties. Enseign. Math. (2) 23(1–2), 39–110 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Schubert, D.: A new compactification of the moduli space of curves. Compos. Math. 78(3), 297–313 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Serre, J.-P.: Algebraic Groups and Class Fields. Graduate Texts in Mathematics, vol. 117. Springer, New York (1988). Translated from the French

    Book  MATH  Google Scholar 

  25. Stankova-Frenkel, Z.-E.: Moduli of trigonal curves. J. Algebr. Geom. 9(4), 607–662 (2000)

    MathSciNet  MATH  Google Scholar 

  26. van der Wyck, F.: Moduli of singular curves and crimping. Ph.D. thesis, Harvard University (2010)

  27. Wiman, A.: Über die Doppelcurve auf den geradlinigen Flächen. Acta Math. 19(1), 63–71 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, G.: Fibered algebraic surfaces with low slope. Math. Ann. 276(3), 449–466 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksym Fedorchuk.

Additional information

To Joe Harris on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alper, J., Fedorchuk, M. & Smyth, D.I. Finite Hilbert stability of (bi)canonical curves. Invent. math. 191, 671–718 (2013). https://doi.org/10.1007/s00222-012-0403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0403-6

Keywords

Navigation