Skip to main content
Log in

Finiteness of relative equilibria of the four-body problem

Inventiones mathematicae Aims and scope

Abstract

We show that the number of relative equilibria of the Newtonian four-body problem is finite, up to symmetry. In fact, we show that this number is always between 32 and 8472. The proof is based on symbolic and exact integer computations which are carried out by computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Albouy, A.: Integral Manifolds of the N-body problem. Invent. Math. 114, 463–488 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albouy, A.: The symmetric central configurations of four equal masses. In: Hamiltonian Dynamics and Celestial Mechanics, Contemp. Math. 198 (1996)

  3. Albouy, A., Chenciner, A.: Le problème des n corps et les distances mutuelles. Invent. Math. 131, 151–184 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Avis, D.: lrs – Version 4.1. http://cgm.cs.mcgill.ca/∼avis/C/lrs.html

  5. Avis, D., Fukuda, K.: A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra. Discrete Comput. Geom. 8, 295–313 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bernstein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9, 183–185 (1975)

    Article  MATH  Google Scholar 

  7. Cabral, H.: On the integral manifolds of the n-body problem. Invent. Math. 20, 59–72 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chazy, J.: Sur certaines trajectoires du problème des n corps. Bull. Astron. 35, 321–389 (1918)

    Google Scholar 

  9. Christof, T., Loebel, A.: PORTA: POlyhedron Representation Transformation Algorithm, Version 1.3.2. http://www.iwr.uni-heidelberg.de/∼iwr/comopt/soft/PORTA/readme.html

  10. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. New York: Springer 1997

  11. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. New York: Springer 1998

  12. Dziobek, O.: Über einen merkwürdigen Fall des Vielkörperproblems. Astron. Nachr. 152, 33–46 (1900)

    Google Scholar 

  13. Emiris, I.: Mixvol. http://www.inria.fr/saga/emiris

  14. Emiris, I., Canny, J.: Efficient incremental algorithm for the sparse resultant and the mixed volume. J. Symb. Comput. 20, 117–149 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Euler, L.: De motu rectilineo trium corporum se mutuo attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)

    Google Scholar 

  16. Hampton, M.: Concave Central Configurations in the Four Body Problem. Thesis, University of Washington 2002

  17. Grayson, D.R., Sullivan, M.E.: Macaulay 2, a software system for research in algebraic geometry and commutative algebra. http://www.math.uic.edu/Macaulay2/

  18. http://www.math.umn.edu/∼rick

  19. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64, 1541–1555 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Khovansky, A.G.: Newton polyhedra and toric varieties. Funct. Anal. Appl. 11, 289–296 (1977)

    Article  Google Scholar 

  21. Kushnirenko, A.G.: Newton polytopes and the Bézout theorem. Funct. Anal. Appl. 10, 233–235 (1976)

    Article  MATH  Google Scholar 

  22. Kuz’mina, R.P.: On an upper bound for the number of central configurations in the planar n-body problem. Sov. Math. Dokl. 18, 818–821 (1977)

    MATH  Google Scholar 

  23. Lagrange, J.L.: Essai sur le problème des trois corps. OEuvres, vol. 6 (1772)

  24. Lefschetz, S.: Algebraic Geometry, Princeton: Princeton University Press 1953

  25. Lehmann-Filhés, R.: Über zwei Fälle des Vielkörpersproblems. Astron. Nachr. 127, 137–143 (1891)

    Google Scholar 

  26. Llibre, J.: On the number of central configurations in the N-body problem. Celest. Mech. Dyn. Astron. 50, 89–96 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. MacDuffee, C.C.: Theory of Matrices. New York: Chelsea Publishing Co. 1946

  28. MacMillan, W.D., Bartky, W.: Permanent configurations in the problem of four bodies. Trans. Am. Math. Soc. 34, 838–875 (1932)

    Article  MATH  MathSciNet  Google Scholar 

  29. McCord, C.K.: Planar central configuration estimates in the n-body problem. Ergodic Theory Dyn. Syst. 16, 1059–1070 (1996)

    MATH  MathSciNet  Google Scholar 

  30. McCord, C.K., Meyer, K.R., Wang, Q.: The integral manifolds of the three body problem. Providence, RI: Am. Math. Soc. 1998

  31. Moeckel, R.: Relative equilibria of the four-body problem. Ergodic Theory Dyn. Syst. 5, 417–435 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  32. Moeckel, R.: On central configurations. Math. Z. 205, 499–517 (1990)

    MATH  MathSciNet  Google Scholar 

  33. Moeckel, R.: Generic Finiteness for Dziobek Configurations. Trans. Am. Math. Soc. 353, 4673–4686 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Moeckel, R.: A Computer Assisted Proof of Saari’s Conjecture for the Planar Three-Body Problem. To appear in Trans. Am. Math. Soc.

  35. Moulton, F.R.: The Straight Line Solutions of the Problem of n Bodies. Ann. Math. 12, 1–17 (1910)

    Article  MATH  MathSciNet  Google Scholar 

  36. Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The double description method. Ann. Math. Stud. 28, 51–73 (1953)

    MATH  MathSciNet  Google Scholar 

  37. Newton, I.: Philosophi naturalis principia mathematica. London: Royal Society 1687

  38. Roberts, G.: A continuum of relative equilibria in the five-body problem. Phys. D 127, 141–145 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Saari, D.: On the Role and Properties of n-body Central Configurations. Celest. Mech. 21, 9–20 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  40. Shafarevich, I.R.: Basic Algebraic Geometry 1, Varieties in Projective Space. Berlin, Heidelberg, New York: Springer 1994

  41. Simó, C.: Relative equilibria in the four-body problem. Celest. Mech. 18, 165–184 (1978)

    Article  MATH  Google Scholar 

  42. Smale, S.: Topology and Mechanics, II, The planar n-body problem. Invent. Math. 11, 45–64 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  43. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  44. Tien, F.: Recursion Formulas of Central Configurations. Thesis, University of Minnesota 1993

  45. Walker, R.: Algebraic Curves. New York: Dover Publications, Inc. 1962

  46. Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton Math. Series 5. Princeton, NJ: Princeton University Press 1941

  47. Wolfram, S.: Mathematica, version 5.0.1.0. Wolfram Research, Inc.

  48. Xia, Z.: Central configurations with many small masses. J. Differ. Equations 91, 168–179 (1991)

    Article  MATH  Google Scholar 

  49. Xia, Z.: Central configurations for the four-body and five-body problems. Preprint

  50. Zeigler, G.: Lectures on Polytopes. Grad. Texts Math. 152. New York: Springer 1995

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marshall Hampton or Richard Moeckel.

Additional information

Mathematics Subject Classification (2000)

70F10, 70F15, 37N05, 76Bxx

Electronic Supplementary Material

FinitenessRE4BP_Archive.zip

The supplementary material for this paper is contained in a zipped directory called FinitenessRE4BP_Archive.zip

To save the files to your computer, simply click the link and select “Save as ...”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hampton, M., Moeckel, R. Finiteness of relative equilibria of the four-body problem. Invent. math. 163, 289–312 (2006). https://doi.org/10.1007/s00222-005-0461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-005-0461-0

Keywords

Navigation