Skip to main content
Log in

On the category đť’Ş for rational Cherednik algebras

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study the category 𝒪 of representations of the rational Cherednik algebra AW attached to a complex reflection group W. We construct an exact functor, called Knizhnik-Zamolodchikov functor: 𝒪→ℋW-mod, where ℋW is the (finite) Iwahori-Hecke algebra associated to W. We prove that the Knizhnik-Zamolodchikov functor induces an equivalence between 𝒪/𝒪tor, the quotient of 𝒪 by the subcategory of AW-modules supported on the discriminant, and the category of finite-dimensional ℋW-modules. The standard AW-modules go, under this equivalence, to certain modules arising in Kazhdan-Lusztig theory of “cells”, provided W is a Weyl group and the Hecke algebra ℋW has equal parameters. We prove that the category 𝒪 is equivalent to the module category over a finite dimensional algebra, a generalized “q-Schur algebra” associated to W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkhipov, S.: Semi-infinite cohomology of associative algebras and bar duality. Int. Math. Res. Not. 17, 833–863 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbasch, D., Vogan, D.: Primitive ideals and orbital integrals in complex exceptional groups. J. Algebra 80, 350–382 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Berest, Y., Etingof, P., Ginzburg, V.: Cherednik algebras and differential operators on quasi-invariants. Duke Math. J. 118, 279–337 (2003)

    Google Scholar 

  4. Bjork, J.-E.: Rings of differential operators. North-Holland Math. Libr. 21. Amsterdam, New York: North-Holland Publishing Co. 1979

  5. Borel, A., et al.: Algebraic D-modules. Academic Press 1987

  6. Broué, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 500, 127–190 (1998)

    MathSciNet  Google Scholar 

  7. Broué, M., Michel, J.: Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées. In: Finite reductive groups, 73–139. Birkhäuser 1997

  8. Cline, E., Parshall, B., Scott, L.: Finite dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Cline, E., Parshall, B., Scott, L.: Stratifying endomorphism algebras. Mem. Am. Math. Soc. 124 (1996)

  10. Deligne, P.: Equations différentielles à points singuliers réguliers. Lect. Notes Math. 163. Springer 1970

  11. Dipper, R., James, G.: Representations of Hecke Algebras of General Linear Groups. Proc. Lond. Math. Soc., III. Ser. 52, 20–52 (1986)

    Google Scholar 

  12. Dunkl, C., Opdam, E.: Dunkl operators for complex reflection groups. Proc. Lond. Math. Soc., III. Ser. 86, 70–108 (2003)

    Google Scholar 

  13. Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero-Moser space and deformed Harish-Chandra homomorphism. Invent. Math. 147, 243–348 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garsia, A.M., McLarnan, T.J.: Relations between Young’s natural and the Kazhdan-Lusztig representations of Sn. Adv. Math. 69, 32–92 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Geck, M., Rouquier, R.: Filtrations on projective modules for Iwahori-Hecke algebras. In: Modular representation theory of finite groups, 211–221. de Gruyter 2001

  16. Guay, N.: Projective modules in the category đť’Ş for the Cherednik algebra. To appear in Commun. Pure Appl. Algebra (2003)

  17. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Lusztig, G.: Characters of reductive groups over a finite field. Ann. Math. Stud. 107. Princeton: Princeton Univ. Press 1984

  19. Lusztig, G.: Cells in affine Weyl groups. In: Algebraic groups and related topics. Adv. Studies in Pure Math., Vol. 6, pp. 255–287. Kinokuniya, North-Holland 1985

  20. Lusztig, G.: Cells in affine Weyl groups, III. J. Fac. Sci., Univ. Tokyo, Sect. IA, Math. 34, 223–243 (1987)

    Google Scholar 

  21. MĂĽller, J.: letter, 25 October 2002

  22. Naruse, H.: On an isomorphism between Specht module and left cell of 𝔖n. Tokyo J. Math. 12, 247–267 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208, 209–223 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Soergel, W.: Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3, 421–445 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Soergel, W.: Charakterformeln für Kipp-Moduln über Kac-Moody Algebren. Represent. Theory 1, 115–132 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Ginzburg, Nicolas Guay, Eric Opdam or Raphaël Rouquier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzburg, V., Guay, N., Opdam, E. et al. On the category 𝒪 for rational Cherednik algebras. Invent. math. 154, 617–651 (2003). https://doi.org/10.1007/s00222-003-0313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0313-8

Keywords

Navigation