Experimental Brain Research

, Volume 235, Issue 1, pp 109–120

Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures

  • Melissa C. Kilby
  • Peter C. M. Molenaar
  • Semyon M. Slobounov
  • Karl M. Newell
Research Article

DOI: 10.1007/s00221-016-4769-3

Cite this article as:
Kilby, M.C., Molenaar, P.C.M., Slobounov, S.M. et al. Exp Brain Res (2017) 235: 109. doi:10.1007/s00221-016-4769-3
  • 188 Downloads

Abstract

The experiment was setup to investigate the control of human quiet standing through the manipulation of augmented visual information feedback of selective properties of the motion of two primary variables in postural control: center of pressure (COP) and center of mass (COM). Five properties of feedback information were contrasted to a no feedback dual-task (watching a movie) control condition to determine the impact of visual real-time feedback on the coordination of the joint motions in postural control in both static and dynamic one-leg standing postures. The feedback information included 2D COP or COM position and macro variables derived from the COP and COM motions, namely virtual time-to-contact (VTC) and the COP–COM coupling. The findings in the static condition showed that the VTC and COP–COM coupling feedback conditions decreased postural motion more than the 2D COP or COM positional information. These variables also induced larger sway amplitudes in the dynamic condition showing a more progressive search strategy in exploring the stability limits. Canonical correlation analysis (CCA) found that COP–COM coupling contributed less than the other feedback variables to the redundancy of the system reflected in the common variance between joint motions and properties of sway motion. The COP–COM coupling had the lowest weighting of the motion properties to redundancy under the feedback conditions but overall the qualitative pattern of the joint motion structures was preserved within the respective static and dynamic balance conditions.

Keywords

Postural control Visual feedback Center of pressure Center of mass Virtual time-to-contact Collective variable 

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Melissa C. Kilby
    • 1
  • Peter C. M. Molenaar
    • 2
  • Semyon M. Slobounov
    • 3
  • Karl M. Newell
    • 1
  1. 1.Department of KinesiologyThe University of GeorgiaAthensUSA
  2. 2.Department of Human Development and Family StudiesThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkUSA