Skip to main content
Log in

The buzz-lag effect

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the flash-lag illusion, a brief visual flash and a moving object presented at the same location appear to be offset with the flash trailing the moving object. A considerable amount of studies investigated the visual flash-lag effect, and flash-lag-like effects have also been observed in audition, and cross-modally between vision and audition. In the present study, we investigate whether a similar effect can also be observed when using only haptic stimuli. A fast vibration (or buzz, lasting less than 20 ms) was applied to the moving finger of the observers and employed as a “haptic flash.” Participants performed a two-alternative forced-choice (2AFC) task where they had to judge whether the moving finger was located to the right or to the left of the stationary finger at the time of the buzz. We used two different movement velocities (Slow and Fast conditions). We found that the moving finger was systematically misperceived to be ahead of the stationary finger when the two were physically aligned. This result can be interpreted as a purely haptic analogue of the flash-lag effect, which we refer to as “buzz-lag effect.” The buzz-lag effect can be well accounted for by the temporal-sampling explanation of flash-lag-like effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105:331–348

    Article  CAS  PubMed  Google Scholar 

  • Alais D, Burr D (2003) The “flash-lag” effect occurs in audition and cross-modally. Curr Biol 13:59–63

    Article  CAS  PubMed  Google Scholar 

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    Article  CAS  PubMed  Google Scholar 

  • Arrighi R, Alais D, Burr D (2005) Neural latencies do not explain the auditory and audio-visual flash-lag effect. Vis Res 45:2917–2925

    Article  PubMed  Google Scholar 

  • Baldo MV, Klein SA (1995) Extrapolation or attention shift? Nature 378:565–566

    Article  CAS  PubMed  Google Scholar 

  • Brenner E, Smeets JB (2000) Motion extrapolation is not responsible for the flash-lag effect. Vis Res 40:1645–1648

    Article  CAS  PubMed  Google Scholar 

  • Brenner E, van Beers ER, Rotman G, Smeets JB (2006) The role of uncertainty in the systematic spatial mislocalization of moving objects. J Exp Psychol Hum Percept Perform 32:811–825

    Article  PubMed  Google Scholar 

  • Burr D (1980) Motion smear. Nature 284:164–165

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh P (1997) Predicting the present. Nature 386:19–21

    Article  CAS  PubMed  Google Scholar 

  • Dassonville P (1995) Haptic localization and the internal representation of the hand in space. Exp Brain Res 106:434–448

    Article  CAS  PubMed  Google Scholar 

  • Eagleman DM, Sejnowski TJ (2000) Motion integration and postdiction in visual awareness. Science 287:2036–2038

    Article  CAS  PubMed  Google Scholar 

  • Hubbard TL (2014) The flash-lag effect and related mislocalizations: findings, properties, and theories. Psychol Bull 140:308–338

    Article  PubMed  Google Scholar 

  • Ichikawa M, Masakura Y (2006) Manual control of the visual stimulus reduces the flash-lag effect. Vis Res 46:2192–2203

    Article  PubMed  Google Scholar 

  • Ichikawa M, Masakura Y (2010) Reduction of the flash-lag effect in terms of active observation. Atten Percept Psychophys 72:1032–1044

    Article  PubMed  Google Scholar 

  • Jones SAH, Fiehler K, Henriques DYP (2012) A task-dependent effect of memory and hand-target on proprioceptive localization. Neuropsychologia 50:1462–1470

    Article  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  CAS  PubMed  Google Scholar 

  • Keetels M, Vroomen J (2008) Tactile-visual temporal ventriloquism: no effect of spatial disparity. Percept Psychophys 70:765–771

    Article  PubMed  Google Scholar 

  • Kirschfeld K, Kammer T (1999) The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vis Res 39:3702–3703

    Article  CAS  PubMed  Google Scholar 

  • Krekelberg B, Lappe M (1999) Temporal recruitment along the trajectory of moving objects and the perception of position. Vis Res 39:2669–2679

    Article  CAS  PubMed  Google Scholar 

  • Krekelberg B, Lappe M (2000) A model of the perceived relative positions of moving objects based upon a slow averaging process. Vis Res 40:201–215

    Article  CAS  PubMed  Google Scholar 

  • Lee TC, Khuu SK, Li W, Hayes A (2008) Distortion in perceived image size accompanies flash-lag in depth. J Vis 8:20

    Article  PubMed  Google Scholar 

  • Lopez-Moliner J, Linares D (2006) The flash-lag is reduced when the flash is perceived as a sensory consequence of our action. Vis Res 46:2122–2129

    Article  PubMed  Google Scholar 

  • Lopez-Moliner J, Smeets JB, Brenner E (2003a) Comparing the sensitivity of manual pursuit and perceptual judgments to pictorial depth effects. Psychol Sci 14:232–236

    Article  PubMed  Google Scholar 

  • Lopez-Moliner J, Smeets JB, Brenner E (2003b) Similar effects of a motion-in-depth illusion on manual tracking and perceptual judgements. Exp Brain Res 151:553–556

    Article  PubMed  Google Scholar 

  • Mackay DM (1958) Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181:507–508

    Article  CAS  PubMed  Google Scholar 

  • Maij F, de Grave DD, Brenner E, Smeets JB (2011) Misjudging where you felt a light switch in a dark room. Exp Brain Res 213:223–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Maij F, Wing AM, Medendorp WP (2013) Spatiotemporal integration for tactile localization during arm movements: a probabilistic approach. J Neurophysiol 110:2661–2669

    Article  PubMed  PubMed Central  Google Scholar 

  • Mateeff S, Hohnsbein J (1988) Perceptual latencies are shorter for motion towards the fovea than for motion away. Vis Res 28:711–719

    Article  CAS  PubMed  Google Scholar 

  • Metzger W (1932) Versuch einer gemeinamen Theorie der Phänomene Fröhlichs und Hazeloffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit [An attempt toward a common theory of the phenomena of Fröhlich and Hazelhoff and a criticism of their methods to measure sensation time]. Psychologische Forschung 16:176–200

    Article  Google Scholar 

  • Murakami I (2001) A flash-lag effect in random motion. Vis Res 41:3101–3119

    Article  CAS  PubMed  Google Scholar 

  • Nieman D, Nijhawan R, Khurana B, Shimojo S (2006) Cyclopean flash-lag illusion. Vis Res 46:3909–3914

    Article  PubMed  Google Scholar 

  • Nijhawan R (1994) Motion extrapolation in catching. Nature 370:256–257

    Article  CAS  PubMed  Google Scholar 

  • Nijhawan R (1997) Visual decomposition of colour through motion extrapolation. Nature 386:66–69

    Article  CAS  PubMed  Google Scholar 

  • Nijhawan R, Kirschfeld K (2003) Analogous mechanisms compensate for neural delays in the sensory and the motor pathways; evidence from motor flash-lag. Curr Biol 13:749–753

    Article  CAS  PubMed  Google Scholar 

  • Purushothaman G, Patel SS, Badell HE, Ogmen H (1998) Moving ahead through differential visual latency. Nature 396:424

    Article  CAS  PubMed  Google Scholar 

  • Rao RP, Eagleman DM, Sejnowski TJ (2001) Optimal smoothing in visual motion perception. Neural Comput 13:1243–1253

    Article  CAS  PubMed  Google Scholar 

  • Schlag J, Schlag-Rey M (2013) Through the eye, slowly; delays and localization errors in the visual system. Nat Rev Neurosci 3:191–199

    Article  Google Scholar 

  • Scocchia L, Grosso RA, de’Sperati C, Stucchi N, Baud-Bovy G (2009) Observer’s control of the moving stimulus increases the flash-lag effect. Vis Res 49:2363–2370

    Article  PubMed  Google Scholar 

  • Vroomen J, de Gelder B (2004) Temporal ventriloquism: sound modulates the flash-lag effect. J Exp Psychol Hum Percept Perform 30:513–518

    Article  PubMed  Google Scholar 

  • Watanabe J, Nakatani M, Ando H, Tachi S (2009) Haptic localizations for onset and offset of vibro-tactile stimuli are dissociated. Exp Brain Res 193:483–489

    Article  PubMed  Google Scholar 

  • Whitney D, Murakami I, Cavanagh P (2000) Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vis Res 40:137–149

    Article  CAS  PubMed  Google Scholar 

  • Wichmann FA, Hill NJ (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3:1212–1217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007–2013 under Grant Agreement Number 214728-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Cellini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cellini, C., Scocchia, L. & Drewing, K. The buzz-lag effect. Exp Brain Res 234, 2849–2857 (2016). https://doi.org/10.1007/s00221-016-4687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4687-4

Keywords

Navigation