Skip to main content
Log in

The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The memory for the final position of a moving object which suddenly disappears has been found to be displaced forward, in the direction of motion, and downwards, in the direction of gravity. These phenomena were coined, respectively, Representational Momentum and Representational Gravity. Although both these and similar effects have been systematically linked with the functioning of internal representations of physical variables (e.g. momentum and gravity), serious doubts have been raised for a cognitively based interpretation, favouring instead a major role of oculomotor and perceptual factors which, more often than not, were left uncontrolled and even ignored. The present work aims to determine the degree to which Representational Momentum and Representational Gravity are epiphenomenal to smooth pursuit eye movements. Observers were required to indicate the offset locations of targets moving along systematically varied directions after a variable imposed retention interval. Each participant completed the task twice, varying the eye movements’ instructions: gaze was either constrained or left free to track the targets. A Fourier decomposition analysis of the localization responses was used to disentangle both phenomena. The results show unambiguously that constraining eye movements significantly eliminates the harmonic components which index Representational Momentum, but have no effect on Representational Gravity or its time course. The found outcomes offer promising prospects for the study of the visual representation of gravity and its neurological substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amorim MA, Lang W, Lindinger G, Mayer D, Deecke L, Berthoz A (2000) Modulation of spatial orientation by mental imagery: a MEG study of representational momentum. J Cogn Neurosci 12:569–582

    Article  CAS  PubMed  Google Scholar 

  • Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature 430:560–564

    Article  CAS  PubMed  Google Scholar 

  • Bahill AT, Stark L (1975) Neurological control of horizontal and vertical components of oblique saccadic eye movements. Math Biosci 27:287–298

    Article  Google Scholar 

  • Baloh RW, Yee RD, Honrubia V, Jacobson K (1988) A comparison of the dynamics of horizontal and vertical smooth pursuit in normal human subjects. Aviat Space Environ Med 59:121–124

    CAS  PubMed  Google Scholar 

  • Bennett SJ, Barnes GR (2004) Predictive smooth ocular pursuit during the transient disappearance of a visual target. J Neurophysiol 92:578–590

    Article  PubMed  Google Scholar 

  • Berry MJ, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of moving stimuli by the retina. Nature 398:334–338

    Article  CAS  PubMed  Google Scholar 

  • Bertamini M (1993) Memory for position and dynamic representation. Mem Cogn 21:449–457

    Article  CAS  Google Scholar 

  • Bosco G, Carrozzo M, Lacquaniti F (2008) Contributions of the human temporoparietal junction and MT/V5 + to the timing of interception revealed by transcranial magnetic stimulation. J Neurosci 28:12071–12084

    Article  CAS  PubMed  Google Scholar 

  • Bosco G, Monache S, Gravano S, Indovina I, La Scaleia B, Maffei V, Zago M, Lacquaniti F (2015) Filling gaps in visual motion for target capture. Front Integr Neurosci 9:13

    Article  PubMed  PubMed Central  Google Scholar 

  • De Sá Teixeira N (2014) Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity. Vision Res 105:177–188

    Article  PubMed  Google Scholar 

  • De Sá Teixeira NA (2016) How fast do objects fall in visual memory? Uncovering the temporal and spatial features of representational gravity. PLoS ONE 11(2):e0148953

    Article  PubMed  PubMed Central  Google Scholar 

  • De Sá Teixeira NA, Hecht H (2014a) The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity. J Vestib Res 24:267–279

    PubMed  Google Scholar 

  • De Sá Teixeira NA, Hecht H (2014b) Can representational trajectory reveal the nature of an internal model of gravity? Atten Percept Psychophys 76:1106–1120

    Article  PubMed  Google Scholar 

  • De Sá Teixeira NA, Oliveira AM (2014) Spatial and foveal biases, not perceived mass or heaviness, explain the effect of target size on representational momentum and representational gravity. J Exp Psychol Learn Mem Cogn 40:1664–1679

    Article  PubMed  Google Scholar 

  • De Sá Teixeira NA, Hecht H, Oliveira AM (2013) The representational dynamics of remembered projectile locations. J Exp Psychol Hum Percept Perform 39:1690–1699

    Article  PubMed  Google Scholar 

  • Diaz G, Cooper J, Hayhoe M (2013) Memory and prediction in natural gaze control. Philos Trans R Soc Lond B Biol Sci 368:1628

    Article  Google Scholar 

  • Eggert T, Ladda J, Straube A (2009) Inferring the future trajectory from visual context: is visual background structure used for anticipatory smooth pursuit? Exp Brain Res 196:205–215

    Article  PubMed  Google Scholar 

  • Freyd JJ (1983) The mental representation of movement when static stimuli are viewed. Percept Psychophys 33:575–581

    Article  CAS  PubMed  Google Scholar 

  • Freyd JJ (1987) Dynamic mental representations. Psychol Rev 94:427–438

    Article  CAS  PubMed  Google Scholar 

  • Freyd JJ (1993) Five hunches about perceptual processes and dynamic representations. In: Meyer D, Kornblum S (eds) Attention and performance XIV: synergies in experimental psychology, artificial intelligence, and cognitive neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Freyd JJ, Finke RA (1984) Representational momentum. J Exp Psychol Learn Mem Cogn 10:126–132

    Article  Google Scholar 

  • Freyd JJ, Johnson JQ (1987) Probing the time course of representational momentum. J Exp Psychol Learn Mem Cogn 13:259–269

    Article  CAS  PubMed  Google Scholar 

  • Freyd JJ, Pantzer TM, Cheng JL (1988) Representing statics as forces in equilibrium. J Exp Psychol Gen 117:395–407

    Article  CAS  PubMed  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Grush R (2005) Internal models and the construction of time: generalizing from state estimation to trajectory estimation to address temporal features of perception, including temporal illusions. J Neural Eng 2:S209–S218

    Article  PubMed  Google Scholar 

  • Hubbard TL (1990) Cognitive representation of linear motion: possible direction and gravity effects in judged displacement. Mem Cogn 18:299–309

    Article  CAS  Google Scholar 

  • Hubbard TL (1993) The effects of context on visual representational momentum. Mem Cogn 21:103–114

    Article  CAS  Google Scholar 

  • Hubbard TL (1995) Cognitive representation of motion: evidence for friction and gravity analogues. J Exp Psychol Learn Mem Cogn 21:241–254

    Article  CAS  PubMed  Google Scholar 

  • Hubbard TL (1996) Representational momentum, centripetal force, and curvilinear impetus. J Exp Psychol Learn Mem Cogn 22:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Hubbard TL (1997) Target size and displacement along the axis of implied gravitational attraction: effects of implied weight and evidence of representational gravity. J Exp Psychol Learn Mem Cogn 23:1484–1493

    Article  Google Scholar 

  • Hubbard TL (2005) Representational momentum and related displacements in spatial memory: a review of the findings. Psychon Bull Rev 12:822–851

    Article  PubMed  Google Scholar 

  • Hubbard TL (2006) Computational theory and cognition in representational momentum and related types of displacement: a reply to Kerzel. Psychon Bull Rev 13:174–177

    Article  Google Scholar 

  • Hubbard TL (2014) Forms of momentum across space: representational, operational, and attentional. Psychon Bull Rev 21:1371–1403

    Article  PubMed  Google Scholar 

  • Hubbard TL (2015) The varieties of momnentum-like experience. Psychological Bulletin 141(6):1081–1119

    Article  PubMed  Google Scholar 

  • Hubbard TL, Bharucha JJ (1988) Judged displacement in apparent vertical and horizontal motion. Percept Psychophys 44:211–221

    Article  CAS  PubMed  Google Scholar 

  • Hubbard TL, Ruppel SE (1999) Representational momentum and landmark attraction effects. Can J Exp Psychol 53:242–256

    Article  Google Scholar 

  • Hubbard TL, Ruppel SE (2000) Spatial memory averaging, the landmark attraction effect, and representational gravity. Psychol Res 64:41–55

    Article  CAS  PubMed  Google Scholar 

  • Ke SR, Lam J, Pai DK, Spering M (2013) Directional asymmetries in human smooth pursuit eye movements. Investig Ophtalmol Vis Sci 54:4409–4421

    Article  Google Scholar 

  • Kerzel D (2000) Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Res 40:3703–3715

    Article  CAS  PubMed  Google Scholar 

  • Kerzel D (2002a) A matter of design: no representational momentum with predictability. Vis Cogn 9:66–80

    Article  Google Scholar 

  • Kerzel D (2002b) The locus of “memory displacement” is at least partially perceptual: effects of velocity, expectation, friction, memory averaging, and weight. Percept Psychophys 64:680–692

    Article  PubMed  Google Scholar 

  • Kerzel D (2003a) Centripetal force draws the eyes, not memory of the target, toward the center. J Exp Psychol Learn Mem Cogn 29:458–466

    Article  PubMed  Google Scholar 

  • Kerzel D (2003b) Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Res 43:2623–2635

    Article  PubMed  Google Scholar 

  • Kerzel D (2006) Why eye movements and perceptual factors have to be controlled in studies on “representational momentum”. Psychon Bull Rev 13:166–173

    Article  PubMed  Google Scholar 

  • Kerzel D, Jordan JS, Müsseler J (2001) The role of perception in the mislocalization of the final position of a moving target. J Exp Psychol Hum Percept Perform 27:829–840

    Article  CAS  PubMed  Google Scholar 

  • Kourtzi Z, Nakayama K (2002) Distinct mechanisms for the representation of moving and static objects. Vis Cogn 9:248–264

    Article  Google Scholar 

  • Kowler E (1989) Cognitive expectations, not habits, control anticipatory smooth oculomotor pursuit. Vision Res 29:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • La Scaleia B, Lacquaniti F, Zago M (2014) Neural extrapolation of motion for a ball rolling down an inclined plane. PLoS ONE 9:e99837

    Article  PubMed  PubMed Central  Google Scholar 

  • La Scaleia B, Zago M, Lacquaniti F (2015) Hand interception of occluded motion in humans: a test of model-based vs. on-line control. J Neurophysiol 114:1577–1592

    Article  PubMed  Google Scholar 

  • Lacquaniti F, Bosco G, Indovina I, La Scaleia B, Maffei V, Moscatelli A, Zago M (2013) Visual gravitational motion and the vestibular system in humans. Front Integr Neurosci 7:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacquaniti F, Bosco G, Gravano S, Indovina I, La Scaleia B, Maffei V, Zago M (2014) Multisensory integration and internal models for sensing gravity effects in primates. BioMed Res Int 2014

  • Ladda J, Eggert T, Glasauer S, Straube A (2007) Velocity scaling of cue induced smooth pursuit acceleration obeys constraints of natural motion. Exp Brain Res 182:343–356

    Article  PubMed  Google Scholar 

  • Mitrani L, Dimitrov G (1978) Pursuit eye movements of a disappearing moving target. Vision Res 18:537–539

    Article  CAS  PubMed  Google Scholar 

  • Motes MA, Hubbard TL, Courtney JR, Rypma B (2008) A principal components analysis of dynamic spatial memory biases. J Exp Psychol Learn Mem Cogn 34:1076–1083

    Article  PubMed  Google Scholar 

  • O’Reagan JK, Nöe A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24:939–1031

    Article  Google Scholar 

  • Poon C, Merfeld DM (2005) Internal models: the state of the art (Editorial for special issue: Sensory integration, state estimation, and motor control in the brain: role of internal models). J Neural Eng 2

  • Rao H, Han S, Jiang Y, Xue Y, Gu H, Cui Y, Gao D (2004) Engagement of the prefrontal cortex in representational momentum: an fMRI study. Neuroimage 23:98–103

    Article  PubMed  Google Scholar 

  • Robinson DA, Gordon JL, Gordon SE (1986) A Model of the smooth pursuit eye movement system. Biological Cybernetics 55:43–57

    Article  CAS  PubMed  Google Scholar 

  • Rottach KG, Zivotofsky AZ, Das VE, Averbuch-Heller L, DiScenna AO, Poonyalathang A, Leigh RJ (1996) Comparison of horizontal, vertical and diagonal smooth pursuit eye movements in normal human subjects. Vision Res 36:2189–2195

    Article  CAS  PubMed  Google Scholar 

  • Sekuler R, Armstrong R (1978) Fourier analysis of polar coordinate data in visual physiology and psychophysics. Behav Res Methods Instrum 10:8–14

    Article  Google Scholar 

  • Senior C, Barnes J, Giampietro V, Brammer M, Bullmore E, Simmons A, David AS (2000) The functional neuroanatomy of implicit motion perception or ‘representational momentum’. Curr Biol 10:16–22

    Article  CAS  PubMed  Google Scholar 

  • Senior C, Ward J, David AS (2002) Representational momentum and the brain: an investigation into the functional necessity of V5/MT. Vis Cogn 9:81–92

    Article  Google Scholar 

  • Shepard RN (1984) Ecological constraints on internal representation: resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychol Rev 91:417–447

    Article  CAS  PubMed  Google Scholar 

  • Sheth BR, Shimojo S (2001) Compression of space in visual memory. Vision Res 41:329–341

    Article  CAS  PubMed  Google Scholar 

  • Snyder L (1999) This way up: illusions and the internal models in the vestibular system. Nat Neurosci 2:396–398

    Article  CAS  PubMed  Google Scholar 

  • Tin C, Poon C-S (2005) Internal models in sensorimotor integration: perspectives from adaptive control theory. J Neural Eng 2:S147–S163

    Article  PubMed  PubMed Central  Google Scholar 

  • von Helmholtz H (1867) Handbuch der physiologischen Optik. Leopold Voss, Leipzig

    Google Scholar 

  • Zago M, McIntyre J, Senot P, Lacquaniti F (2008) Internal models and prediction of visual gravitational motion. Vision Res 48:1532–1538

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant SFRH/BPD/84118/2012 by the Portuguese Foundation for Science and Technology (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Alexandre De Sá Teixeira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Sá Teixeira, N.A. The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements. Exp Brain Res 234, 2491–2504 (2016). https://doi.org/10.1007/s00221-016-4654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4654-0

Keywords

Navigation