Skip to main content
Log in

Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated the effect of this manipulation on the internal forward and inverse models by measuring two kinds of behavior: generalization of training in one direction to neighboring directions (as a proxy for inverse models) and localization of the hand position after movement without visual feedback (as a proxy for forward model). The experimental results showed no effect of cerebellar tDCS on generalization, but significant effect on localization. These observations support the idea that the cerebellum is a possible brain region for internal forward, but not inverse model formation. We also used a realistic human head model to calculate current density distribution in the brain. The result of this model confirmed the passage of current through the cerebellum. Moreover, to further explain some observed experimental results, we modeled the visuomotor adaptation process with the help of a biologically inspired method known as population coding. The effect of tDCS was also incorporated in the model. The results of this modeling study closely match our experimental data and provide further evidence in line with the idea that tDCS manipulates FM’s function in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balitsky Thompson AK, Henriques DY (2010) Visuomotor adaptation and intermanual transfer under different viewing conditions. Exp Brain Res 202(3):543–552. doi:10.1007/s00221-010-2155-0

    Article  PubMed  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81(1):39–60

    Article  CAS  PubMed  Google Scholar 

  • Bikson M, Rahman A, Datta A, Fregni F, Merabet L (2012) High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation 15(4):306–315. doi:10.1111/j.1525-1403.2012.00481.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Bindman LJ, Lippold OC, Redfearn JW (1962) Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature 196:584–585

    Article  CAS  PubMed  Google Scholar 

  • Bindman LJ, Lippold OC, Redfearn JW (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 172:369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbaumer N (2007) Motor learning: passing a skill from one hand to the other. Curr Biol 17(23):R1024–R1026

    Article  CAS  PubMed  Google Scholar 

  • Blakemore S-J, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. NeuroReport 12(9):1879–1884

    Article  CAS  PubMed  Google Scholar 

  • Block H, Celnik P (2013) Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning. Cerebellum 12(6):781–793. doi:10.1007/s12311-013-0486-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Boehringer A, Macher K, Dukart J, Villringer A, Pleger B (2013) Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul 6(4):649–653. doi:10.1016/j.brs.2012.10.001

    Article  PubMed  Google Scholar 

  • Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249(1):31–38

    Article  PubMed  Google Scholar 

  • Cerminara NL, Apps R, Marple-Horvat DE (2009) An internal model of a moving visual target in the lateral cerebellum. J Physiol 587(Pt 2):429–442. doi:10.1113/jphysiol.2008.163337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coltz JD, Johnson MT, Ebner TJ (2000) Population code for tracking velocity based on cerebellar Purkinje cell simple spike firing in monkeys. Neurosci Lett 296(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Cressman EK, Henriques DY (2009) Sensory recalibration of hand position following visuomotor adaptation. J Neurophysiol 102(6):3505–3518. doi:10.1152/jn.00514.2009

    Article  PubMed  Google Scholar 

  • Cullen KE, Brooks JX, Jamali M, Carriot J, Massot C (2011) Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing. Exp Brain Res 210(3–4):377–388

    Article  PubMed  Google Scholar 

  • Darainy M, Vahdat S, Ostry DJ (2013) Perceptual learning in sensorimotor adaptation. J Neurophysiol 110(9):2152–2162. doi:10.1152/jn.00439.2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M (2009) Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2(4):201.e201–207.e201. doi:10.1016/j.brs.2009.03.005

    Article  Google Scholar 

  • Diedrichsen J, White O, Newman D, Lally N (2010) Use-dependent and error-based learning of motor behaviors. J Neurosci 30(15):5159–5166. doi:10.1523/JNEUROSCI.5406-09.2010

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, Priori A (2008) Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci 20(9):1687–1697. doi:10.1162/jocn.2008.20112

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, Priori A (2012) Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot 26(5):786–799. doi:10.1080/02699931.2011.619520

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, Priori A (2013) Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum 12(4):485–492. doi:10.1007/s12311-012-0436-9

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17(4):1519–1528

    CAS  PubMed  Google Scholar 

  • Flanagan JR, Vetter P, Johansson RS, Wolpert DM (2003) Prediction precedes control in motor learning. Curr Biol 13(2):146–150

    Article  CAS  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166(1):23–30. doi:10.1007/s00221-005-2334-6

    Article  PubMed  Google Scholar 

  • Galea JM, Jayaram G, Ajagbe L, Celnik P (2009) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29(28):9115–9122. doi:10.1523/JNEUROSCI.2184-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P (2011) Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex 21(8):1761–1770. doi:10.1093/cercor/bhq246

    Article  PubMed  PubMed Central  Google Scholar 

  • Gartside IB (1968) Mechanisms of sustained increases of firing rate of neurons in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance? Nature 220(5165):382–383

    Article  CAS  PubMed  Google Scholar 

  • Gentili RJ, Shewokis PA, Ayaz H, Contreras-Vidal JL (2013) Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task. Front Hum Neurosci 7:277. doi:10.3389/fnhum.2013.00277

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Gomi H, Kawato M (1992) Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biol Cybern 68(2):105–114

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez Castro LN, Monsen CB, Smith MA (2011) The binding of learning to action in motor adaptation. PLoS Comput Biol 7(6):e1002052. doi:10.1371/journal.pcbi.1002052

    Article  PubMed  PubMed Central  Google Scholar 

  • Haggard P, Newman C, Blundell J, Andrew H (2000) The perceived position of the hand in space. Percept Psychophys 62(2):363–377

    Article  CAS  PubMed  Google Scholar 

  • Higuchi S, Imamizu H, Kawato M (2007) Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex 43(3):350–358

    Article  PubMed  Google Scholar 

  • Hummel F, Celnik P, Giraux P, Floel A, Wu W-H, Gerloff C, Cohen LG (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128(3):490–499

    Article  PubMed  Google Scholar 

  • Imamizu H, Kawato M (2012) Cerebellar internal models: implications for the dexterous use of tools. The Cerebellum 11(2):325–335

    Article  CAS  PubMed  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403(6766):192–195. doi:10.1038/35003194

    Article  CAS  PubMed  Google Scholar 

  • Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M (2003) Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci U S A 100(9):5461–5466. doi:10.1073/pnas.0835746100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer M, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann E (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64(5):872–875

    Article  CAS  PubMed  Google Scholar 

  • Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar contributions to reach adaptation and learning sensory consequences of action. J Neurosci 32(12):4230–4239. doi:10.1523/JNEUROSCI.6353-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A (2012) Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol 107(11):2950–2957. doi:10.1152/jn.00645.2011

    Article  PubMed  PubMed Central  Google Scholar 

  • Jola C, Davis A, Haggard P (2011) Proprioceptive integration and body representation: insights into dancers’ expertise. Exp Brain Res 213(2–3):257–265

    Article  PubMed  Google Scholar 

  • Jones SA, Cressman EK, Henriques DY (2010) Proprioceptive localization of the left and right hands. Exp Brain Res 204(3):373–383. doi:10.1007/s00221-009-2079-8

    Article  PubMed  Google Scholar 

  • Jordan MI, Rumelhart DE (1992) Forward models: supervised learning with a distal teacher. Cognitive science 16(3):307–354

    Article  Google Scholar 

  • Katayama M, Kawato M (1993) Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. Biol Cybern 69(5–6):353–362

    Article  CAS  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Gomi H (1992a) The cerebellum and VOR/OKR learning models. Trends Neurosci 15(11):445–453

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Gomi H (1992b) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68(2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57(3):169–185

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188. doi:10.1016/S0079-6123(03)42013-X

    Article  PubMed  Google Scholar 

  • Kitago T, Ryan SL, Mazzoni P, Krakauer JW, Haith AM (2013) Unlearning versus savings in visuomotor adaptation: comparing effects of washout, passage of time, and removal of errors on motor memory. Front Hum Neurosci 7:307. doi:10.3389/fnhum.2013.00307

    Article  PubMed  PubMed Central  Google Scholar 

  • Krauzlis RJ (2000) Population coding of movement dynamics by cerebellar Purkinje cells. NeuroReport 11(5):1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Laurens, J., Meng, H., & Angelaki, D. E. (2013). Computation of linear acceleration through an internal model in the macaque cerebellum. Nature neuroscience

  • Li CS, Padoa-Schioppa C, Bizzi E (2001) Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30(2):593–607

    Article  CAS  PubMed  Google Scholar 

  • Liebetanz D, Koch R, Mayenfels S, König F, Paulus W, Nitsche MA (2009) Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol 120(6):1161–1167

    Article  PubMed  Google Scholar 

  • Lisberger SG (2009) Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience 162(3):763–776. doi:10.1016/j.neuroscience.2009.03.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Robertson E, Miall RC (2003) Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol 89(3):1223–1237

    Article  PubMed  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49(5):1127–1147

    CAS  PubMed  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Mot Behav 25(3):203–216. doi:10.1080/00222895.1993.9942050

    Article  CAS  PubMed  Google Scholar 

  • Miall RC, Christensen LO, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5(11):e316. doi:10.1371/journal.pbio.0050316

    Article  PubMed  PubMed Central  Google Scholar 

  • Milner TE, Franklin DW, Imamizu H, Kawato M (2007) Central control of grasp: manipulation of objects with complex and simple dynamics. Neuroimage 36(2):388–395. doi:10.1016/j.neuroimage.2007.01.057

    Article  PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26(36):9107–9116. doi:10.1523/JNEUROSCI.2622-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003a) Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl Clin Neurophysiol 56(3):255–276

    Article  PubMed  Google Scholar 

  • Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F (2003b) Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 15(4):619–626. doi:10.1162/089892903321662994

    Article  PubMed  Google Scholar 

  • Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1(3):206–223. doi:10.1016/j.brs.2008.06.004

    Article  PubMed  Google Scholar 

  • Nowak DA, Topka H, Timmann D, Boecker H, Hermsdorfer J (2007) The role of the cerebellum for predictive control of grasping. Cerebellum 6(1):7–17. doi:10.1080/14734220600776379

    Article  PubMed  Google Scholar 

  • Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 11(1):98–113

    Article  CAS  PubMed  Google Scholar 

  • Pasalar S, Roitman A, Durfee W, Ebner T (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9(11):1404–1411

    Article  CAS  PubMed  Google Scholar 

  • Plonsey R, Heppner DB (1967) Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys 29(4):657–664

    Article  CAS  PubMed  Google Scholar 

  • Pope PA, Miall RC (2012) Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul 5(2):84–94. doi:10.1016/j.brs.2012.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Pouget A, Dayan P, Zemel R (2000) Information processing with population codes. Nat Rev Neurosci 1(2):125–132. doi:10.1038/35039062

    Article  CAS  PubMed  Google Scholar 

  • Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28:166–185

    CAS  PubMed  Google Scholar 

  • Richardson AG, Overduin SA, Valero-Cabré A, Padoa-Schioppa C, Pascual-Leone A, Bizzi E, Press DZ (2006) Disruption of primary motor cortex before learning impairs memory of movement dynamics. J Neurosci 26(48):12466–12470

    Article  CAS  PubMed  Google Scholar 

  • Rossetti Y, Meckler C, Prablanc C (1994) Is there an optimal arm posture? Deterioration of finger localization precision and comfort sensation in extreme arm-joint postures. Exp Brain Res 99(1):131–136

    Article  CAS  PubMed  Google Scholar 

  • Sabes PN (2000) The planning and control of reaching movements. Curr Opin Neurobiol 10(6):740–746

    Article  CAS  PubMed  Google Scholar 

  • Sadnicka A, Kassavetis P, Saifee TA, Parees I, Rothwell JC, Edwards MJ (2013) Cerebellar transcranial direct current stimulation does not alter motor surround inhibition. Int J Neurosci 123(6):425–432. doi:10.3109/00207454.2012.763165

    Article  PubMed  Google Scholar 

  • Saidi M, Towhidkhah F, Lagzi F, Gharibzadeh S (2012) The effect of proprioceptive training on multisensory perception under visual uncertainty. J Integr Neurosci 11(4):401–415. doi:10.1142/S0219635212500276

    Article  PubMed  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145(4):437–447. doi:10.1007/s00221-002-1140-7

    Article  PubMed  Google Scholar 

  • Shadmehr R (2004) Generalization as a behavioral window to the neural mechanisms of learning internal models. Hum Mov Sci 23(5):543–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185(3):359–381. doi:10.1007/s00221-008-1280-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14(5 Pt 2):3208–3224

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108. doi:10.1146/annurev-neuro-060909-153135

    Article  CAS  PubMed  Google Scholar 

  • Shah B, Nguyen TT, Madhavan S (2013) Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimul. doi:10.1016/j.brs.2013.04.008

    PubMed  Google Scholar 

  • Shahid SS, Bikson M, Salman H, Wen P, Ahfock T (2014) The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation. J Neural Eng 11(3):036002. doi:10.1088/1741-2560/11/3/036002

    Article  PubMed  Google Scholar 

  • Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365(6441):50–52. doi:10.1038/365050a0

    Article  CAS  PubMed  Google Scholar 

  • Smeets JB, van den Dobbelsteen JJ, de Grave DD, van Beers RJ, Brenner E (2006) Sensory integration does not lead to sensory calibration. Proc Natl Acad Sci 103(49):18781–18786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Synofzik M, Lindner A, Thier P (2008) The cerebellum updates predictions about the visual consequences of one’s behavior. Curr Biol 18(11):814–818

    Article  CAS  PubMed  Google Scholar 

  • Taguchi S, Tabata H, Shibata T, Kawato M (2004) Transformation from population codes to firing rate codes by learning: neural representation of smooth pursuit eye movements. Syst Comput Jpn 35(6):79–88

    Article  Google Scholar 

  • Taylor JA, Wojaczynski GJ, Ivry RB (2011) Trial-by-trial analysis of intermanual transfer during visuomotor adaptation. J Neurophysiol 106(6):3157–3172. doi:10.1152/jn.01008.2010

    Article  PubMed  PubMed Central  Google Scholar 

  • Towhidkhah F, Gander RE, Wood HC (1997) Model predictive impedance control: a model for joint movement. J Mot Behav 29(3):209–222. doi:10.1080/00222899709600836

    Article  CAS  PubMed  Google Scholar 

  • Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Annu Rev Physiol 61:435–456. doi:10.1146/annurev.physiol.61.1.435

    Article  CAS  PubMed  Google Scholar 

  • van Beers RJ, Sittig AC, Denier van der Gon JJ (1998) The precision of proprioceptive position sense. Exp Brain Res 122(4):367–377

    Article  PubMed  Google Scholar 

  • van Beers RJ, Wolpert DM, Haggard P (2002) When feeling is more important than seeing in sensorimotor adaptation. Curr Biol 12(10):834–837

    Article  PubMed  Google Scholar 

  • von Hofsten C, Rosblad B (1988) The integration of sensory information in the development of precise manual pointing. Neuropsychologia 26(6):805–821

    Article  Google Scholar 

  • Wang J (2008) A dissociation between visual and motor workspace inhibits generalization of visuomotor adaptation across the limbs. Exp Brain Res 187(3):483–490. doi:10.1007/s00221-008-1393-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sainburg RL (2006) The symmetry of interlimb transfer depends on workspace locations. Exp Brain Res 170(4):464–471. doi:10.1007/s00221-005-0230-8

    Article  PubMed  Google Scholar 

  • Wilson ET, Wong J, Gribble PL (2010) Mapping proprioception across a 2D horizontal workspace. PLoS ONE 5(7):e11851. doi:10.1371/journal.pone.0011851

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7):1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science-New York then Washington, 1880–1880

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9):338–347

    Article  CAS  PubMed  Google Scholar 

  • Yavari F, Towhidkhah F (2014) Modeling the effect of explicit information in visuomotor adaptation. Paper presented at the 22nd Iranian Conference on electrical engineering (ICEE)

  • Yavari F, Towhidkhah F, Ahmadi-Pajouh MA (2013) Are fast/slow process in motor adaptation and forward/inverse internal model two sides of the same coin? Med Hypotheses 81(4):592–600. doi:10.1016/j.mehy.2013.07.009

    Article  PubMed  Google Scholar 

  • Yavari F, Towhidkhah F, Darainy M (2014) A hypothesis on the role of perturbation size on the human sensorimotor adaptation. Front Comput Neurosci 8:1–3

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Jun Izawa for his valuable comments throughout this research and also Dimitrios Palidis for his great comments in editing the manuscript grammatically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Darainy.

Ethics declarations

Conflict of interest

I hereby confirm that there is no conflict of interest in this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, F., Mahdavi, S., Towhidkhah, F. et al. Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study. Exp Brain Res 234, 997–1012 (2016). https://doi.org/10.1007/s00221-015-4523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4523-2

Keywords

Navigation