Skip to main content
Log in

Online processing of shape information for control of grasping

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When picking up objects, we tend to grasp at contact points that minimize slippage and torsion, which depend on the particular shape. Normally, grasp points could be planned before initiating movement. We tested whether grasp points can be determined during online control. Subjects reached to grasp virtual planar objects with varied shapes. On some trials, the object was changed during movement, either rotated by 45° or replaced with a different object. In all conditions, grasp axes were well adapted to the target shape, passing near the center of mass with low force closure angles. On perturbed trials, corrective adjustments were detectable within 320 ms and were toward the same grasp axes observed on unperturbed trials. Perturbations had little effect on either kinematics or the optimality of final grasp points. Our results demonstrate that the visuomotor system is capable of online processing of shape information to determine appropriate contact points for grasping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ansuini C, Santello M, Tubaldi F, Massaccesi S, Castiello U (2007) Control of hand shaping in response to object shape perturbation. Exp Brain Res 180(1):85–96

    Article  PubMed  Google Scholar 

  • Bingham GP, Muchisky MM (1993a) Center of mass perception and inertial frames of reference. Percept Psychophys 54(5):617–632

    Article  CAS  PubMed  Google Scholar 

  • Bingham GP, Muchisky MM (1993b) Center of mass perception: perturbation of symmetry. Percept Psychophys 54(5):633–639

    Article  CAS  PubMed  Google Scholar 

  • Blake A, Brady J (1992) Computational modelling of hand-eye coordination [and discussion]. Philos Trans R Soc Lond B Biol Sci 337(1281):351–360

    Article  Google Scholar 

  • Bridgeman B, Lewis S, Heit G, Nagle M (1979) Relation between cognitive and motor-oriented systems of visual position perception. J Exp Psychol Hum Percept Perform 5(4):692

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Wang Y, Wang H, Tian S, Kong J (2000) Human brain sub-systems for discrimination of visual shapes. NeuroReport 11(11):2415–2418

    Article  CAS  PubMed  Google Scholar 

  • Desmurget M, Prablanc C (1997) Postural control of three-dimensional prehension movements. J Neurophysiol 77(1):452–464

    CAS  PubMed  Google Scholar 

  • Doniger GM, Foxe JJ, Murray MM, Higgins BA, Snodgrass JG, Schroeder CE, Javitt DC (2000) Activation timecourse of ventral visual stream object-recognition areas: high density electrical mapping of perceptual closure processes. J Cogn Neurosci 12(4):615–621

    Article  CAS  PubMed  Google Scholar 

  • Eloka O, Franz VH (2011) Effects of object shape on the visual guidance of action. Vision Res 51(8):925–931

    Article  PubMed  Google Scholar 

  • Fan J, He J, Tillery SIH (2006) Control of hand orientation and arm movement during reach and grasp. Exp Brain Res 171(3):283–296

    Article  PubMed  Google Scholar 

  • Gentilucci M, Chieffi S, Scarpa M, Castiello U (1992) Temporal coupling between transport and grasp components during prehension movements: effects of visual perturbation. Behav Brain Res 47:71–82

    Article  CAS  PubMed  Google Scholar 

  • Glover S, Miall RC, Rushworth MF (2005) Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J Cogn Neurosci 17(1):124–136

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994a) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4(7):604–610

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA, Jakobson LS, Keillor JM (1994b) Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia 32(10):1159–1178

    Article  CAS  PubMed  Google Scholar 

  • Greenwald HS, Knill DC (2009) A comparison of visuomotor cue integration strategies for object placement and prehension. Vis Neurosci 26:63–72

    Article  PubMed Central  PubMed  Google Scholar 

  • Greenwald HS, Knill DC, Saunders JA (2005) Integrating visual cues for motor control: a matter of time. Vision Res 45(15):1975–1989. doi:10.1016/j.visres.2005.01.025

    Article  PubMed  Google Scholar 

  • Hesse C, Franz VH (2009) Corrective processes in grasping after perturbations of object size. J Mot Behav 41(3):253–273

    Article  PubMed  Google Scholar 

  • Kamp CVD, Bongers RM, Zaal FT (2009) Effects of changing object size during prehension. J Mot Behav 41(5):427–435

    Article  PubMed  Google Scholar 

  • Karok S, Newport R (2010) The continuous updating of grasp in response to dynamic changes in object size, hand size and distractor proximity. Neuropsychology 48:3891–3900

    Article  Google Scholar 

  • Kleinholdermann U, Franz VH, Gegenfurtner KR (2013) Human grasp point selection. J Vis. doi:10.1167/13.8.23

    PubMed  Google Scholar 

  • Laimgruber K, Goldenberg G, Hermsdörfer J (2005) Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension. Neuropsychologia 43(5):682–692

    Article  PubMed  Google Scholar 

  • Landsmeer JMF (1962) Power grip and precision handling. Ann Rheum Dis 21(2):164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lederman SJ, Wing AM (2003) Perceptual judgement, grasp point selection and object symmetry. Exp Brain Res 152(2):156–165

    Article  PubMed  Google Scholar 

  • Mamassian P (1997) Prehension of objects oriented in three-dimensional space. Exp Brain Res 114:235–245

    Article  CAS  PubMed  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Napier JR (1956) The prehensile movements of the human hand. J Bone Joint surg 38(4):902–913

    Google Scholar 

  • Paulignan Y, MacKenzie CL, Marteniuk RG, Jeannerod M (1991a) Selective perturbation of visual input during prehension movements: the effects of changing object position. Exp Brain Res 83:502–512

    Article  CAS  PubMed  Google Scholar 

  • Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1991b) Selective perturbation of visual input during prehension movements: II. The effects of changing object size. Exp Brain Res 83(3):502–512

    Article  CAS  PubMed  Google Scholar 

  • Ponce J, Stam D, Faverjon B (1993) On computing two-finger force-closure grasps of curved 2D objects. Int J Robot Res 12(3):263–273

    Article  Google Scholar 

  • Sanz PJ, Del Pobil AP, Inesta JM, Recatala G (1998) Vision-guided grasping of unknown objects for service robots. In: Robotics and Automation, 1998. Proceedings of 1998 IEEE international conference on IEEE, vol 4, pp 3018–3025

  • Saunders JA, Knill DC (2003) Humans use continuous visual feedback from the hand to control fast reaching movements. Exp Brain Res 152(3):341–352. doi:10.1007/s00221-003-1525-2

    Article  PubMed  Google Scholar 

  • Saunders JA, Knill DC (2004) Visual feedback control of hand movements. J Neurosci 24(13):3223–3234

    Article  CAS  PubMed  Google Scholar 

  • Saunders JA, Knill DC (2005) Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements. Exp Brain Res 162(4):458–473. doi:10.1007/s00221-004-2064-1

    Article  PubMed  Google Scholar 

  • Schettino A, Loeys T, Delplanque S, Pourtois G (2011) Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study. Neuroimage 55(3):1227–1241

    Article  PubMed  Google Scholar 

  • Seo NJ, Armstrong TJ (2009) Friction coefficients in a longitudinal direction between the finger pad and selected materials for different normal forces and curvatures. Ergonomics 52(5):609–616

    Article  PubMed  Google Scholar 

  • Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8(4):505–511

    CAS  PubMed  Google Scholar 

  • Voudouris D, Smeets JBJ, Brenner E (2013) Ultra-fast selection of grasping points. J Neurophysiol 110(7):1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Westwood DA, Chapman CD, Roy EA (2000) Pantomimed actions may be controlled by the ventral visual stream. Exp Brain Res 130(4):545–548

    Article  CAS  PubMed  Google Scholar 

  • Westwood DA, Danckert J, Servos P, Goodale MA (2002) Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. Exp Brain Res 144(2):262–267

    Article  PubMed  Google Scholar 

  • Zhang R, Hu Z, Zebi R, Zhang L, Li H, Liu Q (2013) Neural processes underyling the “same”-“different” judgment of two simultaneously presented objects—an EEG study. PLoS One 8(32):e81737

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Saunders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Saunders, J.A. Online processing of shape information for control of grasping. Exp Brain Res 233, 3109–3124 (2015). https://doi.org/10.1007/s00221-015-4380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4380-z

Keywords

Navigation