Skip to main content

Advertisement

Log in

Peripheral nerve injury activates convergent nociceptive input to dorsal horn neurons from neighboring intact nerve

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that peripheral nerve injury induced excessive nociceptive response of spinal cord dorsal horn neurons and such change has been proposed to reflect the development of neuropathic pain state. The aim of this study was to examine the spinal dorsal horn for convergence of nociceptive input to second-order neurons deafferented by peripheral nerve injury. Double immunofluorescence labeling for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) was performed to detect convergent synaptic input to spinal dorsal horn neurons after the saphenous nerve injury. c-Fos expression and the phosphorylation of ERK were induced by noxious heat stimulation of the hindpaw and by electrical stimulation of the injured or uninjured saphenous nerve, respectively. Within the central terminal field of the saphenous nerve, the number of c-Fos protein-like immunoreactive (c-Fos-IR) cell profiles was significantly decreased at 3 days and returned to the control level by 14 days after the injury. p-ERK immunoreactive (p-ERK-IR) cell profiles were distributed in the central terminal field of the saphenous nerve, and the topographic distribution pattern and number of such p-ERK-IR cell profiles remained unchanged after the nerve injury. The time course of changes in the number of double-labeled cell profiles was similar to that of c-Fos-IR cell profiles after the injury. These results indicate that convergent primary nociceptive input through neighboring intact nerves contributes to increased responsiveness of spinal dorsal horn nociceptive neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CNS:

Central nervous system

DAB:

Diaminobenzidine

ES:

Electrical stimulation

c-Fos-IR:

c-Fos protein-like immunoreactive

MAPK:

Mitogen-activated protein kinase

PAP:

Peroxidase anti-peroxidase

p-ERK:

Phosphorylated extracellular signal-regulated kinase

p-ERK-IR:

p-ERK immunoreactive

PB:

Phosphate buffer

PBS:

Phosphate-buffered saline

SNI:

Saphenous nerve injury

References

  • Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296:517–530

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Iwata K, Fukuoka T et al (2002) Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci 22:7737–7745

    CAS  PubMed  Google Scholar 

  • Devor M, Claman D (1980) Mapping and plasticity of acid phosphatase afferents in the rat dorsal horn. Brain Res 190:17–28

    Article  CAS  PubMed  Google Scholar 

  • Devor M, Govrin-Lippmann R (1983) Axoplasmic transport block reduces ectopic impulse generation in injured peripheral nerves. Pain 16:73–85

    Article  CAS  PubMed  Google Scholar 

  • Devor M, Wall PD (1978) Reorganisation of spinal cord sensory map after peripheral nerve injury. Nature 276:75–76

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald M, Vrbova G (1985) Plasticity of acid phosphatase (FRAP) afferent terminal fields and of dorsal horn cell growth in the neonatal rat. J Comp Neurol 240:414–422. doi:10.1002/cne.902400409

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa N, Terayama R, Yamaguchi D, Omura S, Yamashiro T, Sugimoto T (2012) Fos protein-like immunoreactive neurons induced by electrical stimulation in the trigeminal sensory nuclear complex of rats with chronically injured peripheral nerve. Exp Brain Res 219:191–201. doi:10.1007/s00221-012-3078-8

    Article  CAS  PubMed  Google Scholar 

  • Hughes AS, Averill S, King VR, Molander C, Shortland PJ (2008) Neurochemical characterization of neuronal populations expressing protein kinase C gamma isoform in the spinal cord and gracile nucleus of the rat. Neuroscience 153:507–517. doi:10.1016/j.neuroscience.2008.01.082

    Article  CAS  PubMed  Google Scholar 

  • Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634

    Article  CAS  PubMed  Google Scholar 

  • Hylden JL, Nahin RL, Dubner R (1987) Altered responses of nociceptive cat lamina I spinal dorsal horn neurons after chronic sciatic neuroma formation. Brain Res 411:341–350

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Woolf CJ (2001) Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis 8:1–10. doi:10.1006/nbdi.2000.0360

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Baba H, Brenner GJ, Woolf CJ (1999) Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 2:1114–1119. doi:10.1038/16040

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Befort K, Brenner GJ, Woolf CJ (2002) ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 22:478–485

    CAS  PubMed  Google Scholar 

  • Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki Y, Kohno T, Zhuang ZY et al (2004) Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 24:8310–8321. doi:10.1523/jneurosci.2396-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Lisney SJ (1983) Changes in the somatotopic organization of the cat lumbar spinal cord following peripheral nerve transection and regeneration. Brain Res 259:31–39

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Obata K, Yamanaka H, Dai Y, Fukuoka T, Tokunaga A, Noguchi K (2004) Activation of extracellular signal-regulated protein kinase in dorsal horn neurons in the rat neuropathic intermittent claudication model. Pain 109:64–72. doi:10.1016/j.pain.2004.01.010

    Article  CAS  PubMed  Google Scholar 

  • Markus H, Pomeranz B, Krushelnycky D (1984) Spread of saphenous somatotopic projection map in spinal cord and hypersensitivity of the foot after chronic sciatic denervation in adult rat. Brain Res 296:27–39

    Article  CAS  PubMed  Google Scholar 

  • Molander C, Kinnman E, Aldskogius H (1988) Expansion of spinal cord primary sensory afferent projection following combined sciatic nerve resection and saphenous nerve crush: a horseradish peroxidase study in the adult rat. J Comp Neurol 276:436–441

    Article  CAS  PubMed  Google Scholar 

  • Molander C, Hongpaisan J, Grant G (1992) Changing pattern of c-FOS expression in spinal cord neurons after electrical stimulation of the chronically injured sciatic nerve in the rat. Neuroscience 50:223–236

    Article  CAS  PubMed  Google Scholar 

  • Noma N, Tsuboi Y, Kondo M et al (2008) Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions in rats. J Comp Neurol 507:1428–1440. doi:10.1002/cne.21620

    Article  PubMed  Google Scholar 

  • Nomura H, Ogawa A, Tashiro A, Morimoto T, Hu JW, Iwata K (2002) Induction of Fos protein-like immunoreactivity in the trigeminal spinal nucleus caudalis and upper cervical cord following noxious and non-noxious mechanical stimulation of the whisker pad of the rat with an inferior alveolar nerve transection. Pain 95:225–238

    Article  CAS  PubMed  Google Scholar 

  • Seltzer Z, Devor M (1984) Effect of nerve section on the spinal distribution of neighboring nerves. Brain Res 306:31–37

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Asano M, Kitagawa J et al (2006) Phosphorylation of extracellular signal-regulated kinase in medullary and upper cervical cord neurons following noxious tooth pulp stimulation. Brain Res 1072:99–109. doi:10.1016/j.brainres.2005.12.040

    Article  CAS  PubMed  Google Scholar 

  • Shortland P, Molander C (1998) The time-course of abeta-evoked c-fos expression in neurons of the dorsal horn and gracile nucleus after peripheral nerve injury. Brain Res 810:288–293

    Article  CAS  PubMed  Google Scholar 

  • Strassman AM, Vos BP (1993) Somatotopic and laminar organization of fos-like immunoreactivity in the medullary and upper cervical dorsal horn induced by noxious facial stimulation in the rat. J Comp Neurol 331:495–516

    Article  CAS  PubMed  Google Scholar 

  • Strassman AM, Vos BP, Mineta Y, Naderi S, Borsook D, Burstein R (1993) Fos-like immunoreactivity in the superficial medullary dorsal horn induced by noxious and innocuous thermal stimulation of facial skin in the rat. J Neurophysiol 70:1811–1821

    CAS  PubMed  Google Scholar 

  • Sugimoto T, Ichikawa H, Hijiya H, Mitani S, Nakago T (1993) c-Fos expression by dorsal horn neurons chronically deafferented by peripheral nerve section in response to spared, somatotopically inappropriate nociceptive primary input. Brain Res 621:161–166

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto T, Hara T, Shirai H, Abe T, Ichikawa H, Sato T (1994) c-fos induction in the subnucleus caudalis following noxious mechanical stimulation of the oral mucous membrane. Exp Neurol 129:251–256

    Article  CAS  PubMed  Google Scholar 

  • Swett JE, Woolf CJ (1985) The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord. J Comp Neurol 231:66–77. doi:10.1002/cne.902310106

    Article  CAS  PubMed  Google Scholar 

  • Terayama R, Nagamatsu N, Ikeda T et al (1997) Differential expression of Fos protein after transection of the rat infraorbital nerve in the trigeminal nucleus caudalis. Brain Res 768:135–146

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga A, Kondo E, Fukuoka T, Miki K, Dai Y, Tsujino H, Noguchi K (1999) Excitability of spinal cord and gracile nucleus neurons in rats with chronically chronically injured sciatic nerve examined by c-fos expression. Brain Res 847:321–331

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Dai Y, Fukuoka T, Yamanaka H, Obata K, Tokunaga A, Noguchi K (2004) Enhancement of stimulation-induced ERK activation in the spinal dorsal horn and gracile nucleus neurons in rats with peripheral nerve injury. Eur J Neurosci 19:884–890

    Article  PubMed  Google Scholar 

  • Yamaguchi D, Terayama R, Omura S, Tsuchiya H, Sato T, Ichikawa H, Sugimoto T (2014) Effect of adenosine A1 receptor agonist on the enhanced excitability of spinal dorsal horn neurons after peripheral nerve injury. Int J Neurosci 124:213–222. doi:10.3109/00207454.2013.842566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (24592764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuji Terayama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terayama, R., Yamamoto, Y., Kishimoto, N. et al. Peripheral nerve injury activates convergent nociceptive input to dorsal horn neurons from neighboring intact nerve. Exp Brain Res 233, 1201–1212 (2015). https://doi.org/10.1007/s00221-015-4203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4203-2

Keywords

Navigation