Skip to main content
Log in

Transcranial direct current stimulation can selectively affect different processing channels in human visual cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate cortical activity. Nonetheless, information regarding its functional specificity and the extent by which visual performance can be modulated is still lacking. Here, we used vision as model to address if it differentially affects different cell groups in the stimulated area. We applied tDCS to the occiput and performed a series of visual tests in a sham-controlled repeated-measures design. Achromatic contrast sensitivity was assessed psychophysically during tDCS, with tasks designed to target specific spatial frequency (SF) channels, inferred ON, OFF channels and inferred magnocellular and parvocellular pathways of the visual system. Sweep visual evoked potential (sVEP) for contrast sensitivity and Vernier acuity was recorded before and after tDCS. Anodal tDCS significantly increased thresholds for luminance decrements (OFF) only for the inferred magnocellular thresholds. Although tDCS had no significant effects on Vernier or contrast sVEP thresholds, it modulated suprathreshold amplitudes for both tasks. Cathodal tDCS increased sVEP amplitudes at a low SF, decreased it at a medium, and had no effect at a high SF. Cathodal tDCS increased sVEP phase lags for low and decreased it for high SF (maximum change corresponding to change in apparent latency >6 ms). Cathodal and anodal stimulation decreased amplitudes of sVEP Vernier responses. Exclusive tDCS effects on magnocellular thresholds agree with reports of pathway-specific tDCS effects. The dependence of tDCS effects on SF and contrast levels further suggests that tDCS differentially affects different cell groups in the visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antal A, Nitsche MA, Paulus W (2001) External modulation of visual perception in humans. Neuroreport 12:3553–3555

    Article  CAS  PubMed  Google Scholar 

  • Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. IOVS 45:702–707

    Google Scholar 

  • Bikson M, Rahman A (2013) Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Front Hum Neurosci 7:1–5

    Article  Google Scholar 

  • Brunoni AR et al (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5(3):175–195

    Article  PubMed Central  PubMed  Google Scholar 

  • Brunoni AR, Valiengo L, Baccaro A, Zanão TA, de Oliveira JF, Goulart A, Boggio PS, Lotufo PA, Benseñor IM, Fregni F (2013) The sertraline vs electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry 6:1–9

    Google Scholar 

  • Callaway E (2005) Structure and function of parallel pathways in the primate early visual system. J Physiol 566:13–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa TL, Nagy BV, Barboni MT, Boggio PS, Ventura DF (2012) Transcranial direct current stimulation modulates human color discrimination in a pathway-specific manner. Front Psychiatry 3:1–10

    Article  Google Scholar 

  • De Valois KK (1977) Spatial frequency adaptation can enhance contrast sensitivity Vision Res. 17:1057–1065

    Google Scholar 

  • Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66(2):198–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117(4):845–850

    Article  PubMed  Google Scholar 

  • García-Pérez MA (1998) Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties. Vis Res 38(12):1861–1881

    Article  PubMed  Google Scholar 

  • Hamer RD, Carvalho FA, Ventura DF (2013) Effect of contrast and gaps on sweep VEP measurement of human cortical vernier responses. Psychol Neurosci 6:199–212

    Article  Google Scholar 

  • Hou C, Good WV, Norcia AM (2007) Validation study of VEP vernier acuity in normal-vision and amblyopic adults. Invest Ophthalmol Vis Sci 48(9):4070–4078

    Article  PubMed  Google Scholar 

  • Hou C, Norcia AM, Madan A, Tith S, Agarwal R, Good WV (2011) Visual cortical function in very low birth weight infants without retinal or cerebral pathology. Invest Ophthalmol Vis Sci 52(12):9091–9098

    Article  PubMed Central  PubMed  Google Scholar 

  • Iuculano T, Cohen Kadosh RC (2013) The mental cost of cognitive enhancement. J Neurosci 33:4482–4486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A (2012) Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol 107:1881–1889

    Article  PubMed Central  PubMed  Google Scholar 

  • Kar K, Krekelberg B (2014) Transcranial alternating current stimulation attenuates visual motion adaptation. J Neurosci 34(21):7334–7340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kraft A, Roehmel J, Olma M, Schmidt S, Irlbacher K, Brandt S (2010) Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res 207:283–290

    Article  PubMed  Google Scholar 

  • Kuo MF, Nitsche MA (2012) Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci 43(3):192–199

    Article  PubMed  Google Scholar 

  • Lapenta OM, Minati L, Fregni F, Boggio PS (2013) Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation. Front Hum Neurosci 7:246

    Article  Google Scholar 

  • Lennie P, Movshon JA (2005) Coding of color and form in the geniculostriate visual pathway (invited review). J Opt Soc Am A 22(10):2013–2033

    Article  Google Scholar 

  • Mata ML, Ringach DL (2005) Spatial overlap on ON and OFF subregions and its relations to response modulation ratio in macaque primary visual cortex. J Neurophysiol 93:919–928

    Article  PubMed  Google Scholar 

  • Mirabella G, Kjaer PK, Norcia AM, Good WV, Madan A (2006) Visual development in very low birth weight infants. Pediatr Res 60(4):435–439

    Article  PubMed  Google Scholar 

  • Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629

    Article  PubMed  Google Scholar 

  • Norcia AM, Wesemann W, Manny RE (1999) Electrophysiological correlates of vernier and relative motion mechanisms in human visual cortex. Vis Neurosci 16:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Plow EB, Obretenova SN, Fregni F, Pascual-Leone A, Merabet LB (2012) Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation. Neurorehabil Neural Repair 26:616–626

    Article  PubMed  Google Scholar 

  • Pokorny J, Smith VC (1997) Psychophysical signatures associated with magnocellular and parvocellular pathway contrast gain. J Opt Soc Am A 14(9):2477–2487

    Article  CAS  Google Scholar 

  • Priebe JN, Ferster D (2012) Mechanisms of neuronal computation in mammalian visual cortex. Neuron 75:194–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ranieri F, Podda MV, Riccardi E, Frisullo G, Dileone M, Profice P, Grassi C (2012) Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol 107(7):1868–1880

    Article  CAS  PubMed  Google Scholar 

  • Sincich LC, Horton JC (2005) The circuitry of V1 and V2: integration of color, form, and motion. Ann Rev Neurosci 28:303–326

    Article  CAS  PubMed  Google Scholar 

  • Spiegel D, Byblow W, Hess RF, Thompson B (2013) Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activation in individuals with amblyopia. Neurorehabil Neural Repair 27:760–769

    Article  PubMed  Google Scholar 

  • Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neurocientist 17:37–53

    Article  Google Scholar 

  • Sun H, Swanson WH, Arvidson B, Dul MW (2008) Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma. Vis Res 48:2633–2641

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang Y, Norcia AM (1995) An adaptive filter for steady-state evoked responses. Electroencephalogr Clin Neuro 96:268–277

    Article  CAS  Google Scholar 

  • Victor JD, Mast J (1991) A new statistic for steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 78(5):378–388

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, Rampersad SM, Aydin Ü, Vorwerk J, Oostendorp TF, Neuling T, Wolters CH (2014) Investigation of tDCS volume conduction effects in a highly realistic head model. J Neural Eng 11(1):016002

    Article  CAS  PubMed  Google Scholar 

  • Westheimer G (2007) The on-off dichotomy in visual processing: from receptors to perception. Prog Retinal Eye Res 26:636–648

    Article  CAS  Google Scholar 

  • Wright JM, Krekelberg B (2014) Transcranial direct current stimulation over posterior parietal cortex modulates visuospatial localization. J Vis 14(9):5. doi:10.1167/14.9.5

    Article  PubMed Central  PubMed  Google Scholar 

  • Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F (2010) Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current. Neuroscientist 16:285–307

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Marcio Bandeira for his expert assistance in programming the pedestal test. TLC has a FAPESP grant 2011/10794-9, BVN is supported by FAPESP 2009/54292-7 and CNPq 162576/2013-7, MTSB has a FAPESP grant 2007/55125-1, PSB and DFV are CNPq research fellows. Financial support was given by FAPESP Thematic Project 2008/58731-2 to DFV.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago L. Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, T.L., Hamer, R.D., Nagy, B.V. et al. Transcranial direct current stimulation can selectively affect different processing channels in human visual cortex. Exp Brain Res 233, 1213–1223 (2015). https://doi.org/10.1007/s00221-015-4199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4199-7

Keywords

Navigation