Skip to main content

Advertisement

Log in

Decreased face primary motor cortex (face-M1) excitability induced by noxious stimulation of the rat molar tooth pulp is dependent on the functional integrity of face-M1 astrocytes

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Acute inflammatory dental pain is a prevalent condition often associated with limited jaw movements. Mustard oil (MO, a small-fiber excitant/inflammatory irritant) application to the rat molar tooth pulp induces increased excitability (i.e., central sensitization) of trigeminal medullary dorsal horn (MDH) nociceptive neurons that can be modulated by MDH application of the astrocytic inhibitor methionine sulfoximine (MSO). The objectives of the study were to determine whether MO application to the rat right maxillary first molar tooth pulp affects left face-M1 excitability manifested as altered intracortical microstimulation thresholds for evoking electromyographic activity in the right anterior digastric (RAD, jaw-opening muscle), and whether MSO application to face-M1 can modulate this MO effect. Under Ketamine general anesthesia, Sprague–Dawley male rats had a microelectrode positioned at a low-threshold (≤30 μA) face-M1 site. Then MO (n = 16) or control solution (n = 16) was applied to the previously exposed tooth pulp, and RAD threshold was monitored for 15 min. MSO (0.1 mM, n = 8) or saline (n = 8) was then applied to the face-M1, and RAD thresholds were monitored every 15 min for 120 min. ANOVA followed by post hoc Bonferroni was used to analyze data (p < 0.05). Within 15 min of MO (but not control) pulp application, RAD thresholds increased significantly (p < 0.001) as compared to baseline. One hour following MSO (but not saline) application to the face-M1, RAD thresholds decreased significantly (p = 0.005) toward baseline. These novel findings suggest that acute inflammatory dental pain is associated with decreased face-M1 excitability that may be dependent on the functional integrity of face-M1 astrocytes and related to mechanisms underlying limited jaw movements in acute orofacial pain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi K, Lee J-C, Hu JW, Yao D, Sessle BJ (2007) Motor cortex neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res 24(3):97–109

    Article  PubMed  Google Scholar 

  • Adachi K, Murray GM, Lee JC, Sessle BJ (2008) Noxious lingual stimulation influences the excitability of the face primary motor cerebral cortex (Face MI) in the rat. J Neurophysiol 100(3):1234–1244

    Article  CAS  PubMed  Google Scholar 

  • Albrecht J, Norenberg MD (1990) l-Methionine-DL-sulfoximine induces massive efflux of glutamine from cortical astrocytes in primary culture. Eur J Pharmacol 182(3):587–590

    Article  CAS  PubMed  Google Scholar 

  • Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12:332–343

    Article  CAS  PubMed  Google Scholar 

  • Albrecht J, Zielińska M, Norenberg MD (2010) Glutamine as a mediator of ammonia neurotoxicity: a critical appraisal. Biochem Pharmacol 80(9):1303–1308

    Article  CAS  PubMed  Google Scholar 

  • Asanuma H (1989) The Motor Cortex. Raven Press, New York

    Google Scholar 

  • Avivi-Arber L, Lee JC, Sessle BJ (2010a) Effects of incisor extraction on jaw and tongue motor representations within face sensorimotor cortex of adult rats. J Comp Neurol 518(7):1030–1045

    Article  PubMed  Google Scholar 

  • Avivi-Arber L, Lee JC, Sessle BJ (2010b) Cortical orofacial motor representation: effect of diet consistency. J Dent Res 89(10):1142–1147

    Article  CAS  PubMed  Google Scholar 

  • Avivi-Arber L, Martin R, Lee J-C, Sessle BJ (2011) Face sensorimotor cortex and its neuroplasticity related to orofacial sensorimotor functions. Arch Oral Biol 56(12):1440–1465

    Article  PubMed  Google Scholar 

  • Bautista DM, Jordt S-E, Nikai T, Tsuruda PR, Read AJ, Poblete J et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124(6):1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Bejat G, Yao D, Hu JW, Murray GM, Sessle BJ (2008) Effects of noxious stimulation of orofacial tissues on rat licking behaviour. Arch Oral Biol 53(4):361–368

    Article  CAS  PubMed  Google Scholar 

  • Benoist JM, Gautron M, Guilbaud G (1999) Experimental model of trigeminal pain in the rat by constriction of one infraorbital nerve: changes in neuronal activities in the somatosensory cortices corresponding to the infraorbital nerve. Exp Brain Res 126(3):383–398

    Article  CAS  PubMed  Google Scholar 

  • Borsook D (2012) Neurological diseases and pain. Brain 135:320–344

    Article  PubMed Central  PubMed  Google Scholar 

  • Bottcher T, Goiny M, Bering J, Domhof S, Nau R, Ungerstedt U (2003) Regional differences in glutamine synthetase inhibition by l-methionine sulfoximine: a microdialysis study in the rabbit brain. Exp Brain Res 150(2):194–200

    CAS  PubMed  Google Scholar 

  • Boudreau S, Romaniello A, Wang K, Svensson P, Sessle BJ, Arendt-Nielsen L (2007) The effects of intra-oral pain on motor cortex neuroplasticity associated with short-term novel tongue-protrusion training in humans. Pain 132(1–2):169–178

    Article  PubMed  Google Scholar 

  • Boudreau SA, Hennings K, Svensson P, Sessle BJ, Arendt-Nielsen L (2010) The effects of training time, sensory loss and pain on human motor learning. J Oral Rehabil 37(9):704–718

    Article  CAS  PubMed  Google Scholar 

  • Butovas S, Schwarz C (2003) Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J Neurophysiol 90(5):3024–3039

    Article  PubMed  Google Scholar 

  • Byers MR, Närhi MV (1999) Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit Rev Oral Biol Med 10(1):4–39

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Wang H, Chiang C-Y, Dostrovsky JO, Sessle BJ (2013) Pregabalin suppresses nociceptive behavior and central sensitization in a rat trigeminal neuropathic pain model. J Pain 14(2):193–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capra NF, Hisley CK, Masri RM (2007) The influence of pain on masseter spindle afferent discharge. Arch Oral Biol 52(4):387–390

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen R (2004) Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154(1):1–10

    Article  PubMed  Google Scholar 

  • Cheong JY, Yoon TS, Lee SJ (2003) Evaluations of inhibitory effect on the motor cortex by cutaneous pain via application of capsaicin. Electromyogr Clin Neurophysiol 43(4):203–210

    CAS  PubMed  Google Scholar 

  • Chiang CY, Park SJ, Kwan CL, Hu JW, Sessle BJ (1998) NMDA receptor mechanisms contribute to neuroplasticity induced in caudalis nociceptive neurons by tooth pulp stimulation. J Neurophysiol 80(5):2621–2631

    CAS  PubMed  Google Scholar 

  • Chiang CY, Hu B, Hu JW, Dostrovsky JO, Sessle BJ (2002) Central sensitization of nociceptive neurons in trigeminal subnucleus oralis depends on integrity of subnucleus caudalis. J Neurophysiol 88(1):256–264

    PubMed  Google Scholar 

  • Chiang CY, Wang J, Xie YF, Zhang S, Hu JW, Dostrovsky JO et al (2007) Astroglial glutamate-glutamine shuttle is involved in central sensitization of nociceptive neurons in rat medullary dorsal horn. J Neurosci 27(34):9068–9076

    Article  CAS  PubMed  Google Scholar 

  • Chiang CY, Li Z, Dostrovsky JO, Hu JW, Sessle BJ (2008) Glutamine uptake contributes to central sensitization in the medullary dorsal horn. Neuroreport 19(11):1151–1154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiang CY, Li Z, Dostrovsky JO, Sessle BJ (2010) Central sensitization in medullary dorsal horn involves gap junctions and hemichannels. Neuroreport 21(3):233–237

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiang C-Y, Dostrovsky JO, Iwata K, Sessle BJ (2011) Role of glia in orofacial pain. Neuroscientist 17(3):303–320

    Article  CAS  PubMed  Google Scholar 

  • Chiang CY, Sessle BJ, Dostrovsky JO (2012) Role of astrocytes in pain. Neurochem Res 37(11):2419–2431

    Article  CAS  PubMed  Google Scholar 

  • Chudler EH, Dong WK, Kawakami Y (1985) Tooth pulp-evoked potentials in the monkey—cortical surface and intracortical distribution. Pain 22(3):221–233

    Article  CAS  PubMed  Google Scholar 

  • Dong WK, Chudler EH (1995) Cortical nociceptive mechanisms. A review of neurophysiological and behavioral evidence in the primate. In: Besson JM, Guilbaud G, Ollat H (eds) Forebrain areas involved in pain processing, John Libbey Eurotext, Paris,  pp 183–196

  • Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451

    Article  CAS  PubMed  Google Scholar 

  • Dube JA, Mercier C (2011) Effect of pain and pain expectation on primary motor cortex excitability. Clin Neurophysiol 122(11):2318–2323

    Article  PubMed  Google Scholar 

  • Ebner FF (2005) Neural plasticity in adult somatic sensory-motor systems. CRS Press, Florida

    Book  Google Scholar 

  • Farina S, Valeriani M, Rosso T, Aglioti S, Tamburin S, Fiaschi A et al (2001) Transient inhibition of the human motor cortex by capsaicin-induced pain. A study with transcranial magnetic stimulation. Neurosci Lett 314(1–2):97–101

    Article  CAS  PubMed  Google Scholar 

  • Fernandes SP, Dringen R, Lawen A, Robinson SR (2010) Neurones express glutamine synthetase when deprived of glutamine or interaction with astrocytes. J Neurochem 114(5):1527–1536

    CAS  PubMed  Google Scholar 

  • Gibbs LJ, Hargreaves KM (2013) Orofacial Pain. Wall and Melzack’s textbook of pain. Elsevier-Health Sciences Division, Philadelphia, pp 803–814

    Google Scholar 

  • Greenshaw AJ (1985) Electrical and chemical stimulation of brain tissue in vivo. In: Boulton AA, Baker GB (eds) Neuromethods: General Neurochemical Techniques, vol 1. Humana Press Inc., New Jersey, pp 233–277

    Chapter  Google Scholar 

  • Halassa MM, Haydon PG (2009) The tripartite synapse. In: Parpura V, Haydon PG (eds) Astrocytes in (patho)physiology of the nervous system. Springer, New York, pp 407–415

    Chapter  Google Scholar 

  • Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743

    Article  CAS  PubMed  Google Scholar 

  • Hu JW (1990) Response properties of nociceptive and nonnociceptive neurons in the rats trigeminal subnucleus caudalis (Medullary dorsal horn) related to cutaneous and deep craniofacial afferent stimulation and modulation by diffuse noxious inhibitory controls. Pain 41(3):331–345

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Kaneko T, Kaneko R, Chokechanachaisakul U, Kawamura J, Sunakawa M et al (2011) The role of N-methyl-D-aspartate receptor subunits in the rat thalamic mediodorsal nucleus during central sensitization. Brain Res 1371:16–22

    Article  CAS  PubMed  Google Scholar 

  • Kawamura J, Kaneko T, Kaneko M, Sunakawa M, Kaneko R, Chokechanachaisakul U et al (2010) Neuron-immune interactions in the sensitized thalamus induced by mustard oil application to rat molar pulp. J Dent Res 89(11):1309–1314

    Article  CAS  PubMed  Google Scholar 

  • Kimelberg HK (2004) The problem of astrocyte identity. Neurochem Int 45(2–3):191–202

    Article  CAS  PubMed  Google Scholar 

  • Lamar C, Sellinge O (1965) Inhibition in vivo of cerebral glutamine synthetase and glutamine transferase by convulsant methionine sulfoximine. Biochem Pharmacol 14(4):489–506

    Article  CAS  PubMed  Google Scholar 

  • Laskawi R, Rohlmann A, Landgrebe M, Wolff JR (1997) Rapid astroglial reactions in the motor cortex of adult rats following peripheral facial nerve lesions. Eur Arch Otorhinolaryngol 254(2):81–85

    Article  CAS  PubMed  Google Scholar 

  • Le Pera D, Graven-Nielsen T, Valeriani M, Oliviero A, Di Lazzaro V, Tonali PA et al (2001) Inhibition of motor system excitability at cortical and spinal level by tonic muscle pain. Clin Neurophysiol 112(9):1633–1641

    Article  PubMed  Google Scholar 

  • Lebars D, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls (DNIC). 1. Effects on dorsal horn convergent neurons in the rat. Pain 6(3):283–304

    Article  CAS  Google Scholar 

  • Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen JP (2006) Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology 67(9):1568–1574

    Article  CAS  PubMed  Google Scholar 

  • Leo RJ, Latif T (2007) Repetitive transcranial magnetic stimulation (rTMS) in experimentally induced and chronic neuropathic pain: a review. J Pain 8(6):453–459

    Article  PubMed  Google Scholar 

  • Lipton JA, Ship JA, Larachrobinson D (1993) Estimated prevalence and distribution of reported orofacial pain in the United-States. J Am Dent Assoc 124(10):115–121

    Article  CAS  PubMed  Google Scholar 

  • Locker D, Grushka M (1987) Prevalence of oral and facial-pain and discomfort—preliminary results of mail survey. Commun Dent Oral Epidemiol 15(3):169–172

    Article  CAS  Google Scholar 

  • Luft AR, Kaelin-Lang A, Hauser TK, Buitrago MM, Thakor NV, Hanley DF et al (2002) Modulation of rodent cortical motor excitability by somatosensory input. Exp Brain Res 142(4):562–569

    Article  PubMed  Google Scholar 

  • Lund JP (2008) Persistent pain and motor dysfunction. In: Sessle BJ, Lavigne GJ, Lund JP, Dubner R (eds) Orofacial pain: from basic science to clinical management. Quintessence Publishing, Chicago, pp 117–124

    Google Scholar 

  • Lund JP, Donga R, Widmer CG, Stohler CS (1991) The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. Can J Physiol Pharmacol 69(5):683–694

    Article  CAS  PubMed  Google Scholar 

  • Lund JP, Murray GM, Svensson P (2008) Pain and motor reflexes. In: SessleBJ, Lavigne GJ, Lund JP, Dubner R (eds) Orofacial pain: from basic science to clinical management, Quintessence Publising, Chicago, pp 109–116

  • Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K (2011) Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72(1):111–123

    Article  CAS  PubMed  Google Scholar 

  • Martinez-hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase—glial localization in brain. Science 195(4284):1356–1358

    Article  CAS  PubMed  Google Scholar 

  • Mostafeezur RM, Shinoda M, Unno S, Zakir HM, Takatsuji H, Takahashi K et al (2014) Involvement of astroglial glutamate-glutamine shuttle in modulation of the jaw-opening reflex following infraorbital nerve injury. Eur J Neurosci 39(12):2050–2059

    Article  PubMed  Google Scholar 

  • Murray GM, Peck CC (2007) Orofacial pain and jaw muscle activity: a new model. J Orofac Pain 21(4):263–278

    PubMed  Google Scholar 

  • Narita N, Kumar N, Cherkas PS, Chiang CY, Dostrovsky JO, Coderre TJ et al (2012) Systemic pregabalin attenuates sensorimotor responses and medullary glutamate release in inflammatory tooth pain model. Neuroscience 218:359–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nash PG, Macefield VG, Klineberg IJ, Gustin SM, Murray GM, Henderson LA (2010) Changes in human primary motor cortex activity during acute cutaneous and muscle orofacial pain. J Orofac Pain 24(4):379–390

    PubMed  Google Scholar 

  • Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G, Sievert CF et al (1986) The organization of the rat motor cortex: a microstimulation mapping study. Brain Res Rev 11(1):77–96

    Article  Google Scholar 

  • Nixdorf DR, Moana-Filho EJ, Law AS, McGuire LA, Hodges JS, John MT (2010) Frequency of nonodontogenic pain after endodontic therapy: a systematic review and meta-analysis. J Endod 36(9):1494–1498

    Article  PubMed Central  PubMed  Google Scholar 

  • Okada-Ogawa A, Suzuki I, Sessle BJ, Chiang C-Y, Salter MW, Dostrovsky JO et al (2009) Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci 29(36):11161–11171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SJ, Chiang CY, Hu JW, Sessle BJ (2001) Neuroplasticity induced by tooth pulp stimulation in trigeminal subnucleus oralis involves NMDA receptor mechanisms. J Neurophysiol 85(5):1836–1846

    CAS  PubMed  Google Scholar 

  • Park SJ, Zhang S, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ (2006) Central sensitization induced in thalamic nociceptive neurons by tooth pulp stimulation is dependent on the functional integrity of trigeminal brainstem subnucleus caudalis but not subnucleus oralis. Brain Res 1112(1):134–145

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Haydon PG (2008) Astrocytes in (patho)physiology of the nervous system. Springer, New York

    Google Scholar 

  • Polycarpou N, Ng YL, Canavan D, Moles DR, Gulabivala K (2005) Prevalence of persistent pain after endodontic treatment and factors affecting its occurrence in cases with complete radiographic healing. Int Endod J 38(3):169–178

    Article  CAS  PubMed  Google Scholar 

  • Pun H, Awamleh L, Avivi-Arber L (2014) Noxious tooth pulp stimulation decreases rat face primary motor cortex (face-M1) excitability by modulating medullary astrocyte function. Soc Neurosci Abstr 565:10

    Google Scholar 

  • Raghavendra V, Tanga RY, DeLeo JA (2004) Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 20(2):467–473

    Article  PubMed  Google Scholar 

  • Ranck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440

    Article  PubMed  Google Scholar 

  • Ridding MC, Rothwell JC (1997) Stimulus/response curves as a method of measuring motor cortical excitability in man. Electromyogr Mot Control-Electroencephalogr Clin Neurophysiol 100(5):340–344

    Article  Google Scholar 

  • Schabrun SM, Hodges PW (2012) Muscle pain differentially modulates short interval intracortical inhibition and intracortical facilitation in primary motor cortex. J Pain 13(2):187–194

    Article  PubMed  Google Scholar 

  • Sessle BJ (2006) Mechanisms of oral somatosensory and motor functions and their clinical correlates. J Oral Rehabil 33(4):243–261

    Article  CAS  PubMed  Google Scholar 

  • Sessle BJ (2009) Orofacial motor control. In: Squire L (ed) Encyclopedia of neuroscience, vol 7. Academic Press, Oxford, pp 303–308

    Chapter  Google Scholar 

  • Sessle BJ (2011a) Face sensorimotor cortex: its role and neuroplasticity in the control of orofacial movements. In: Gossard JP, Dubuc R, Kolta A (eds) Breathe, walk and chew: the neural challenge: part II. Elsevier, New York, pp 71–82

    Chapter  Google Scholar 

  • Sessle BJ (2011b) Peripheral and central mechanisms of orofacial inflammatory pain. In: Kobayashi M, Koshikawa N, Iwata K, Waddington JL (eds) Translating mechanisms of orofacial neurological disorder. Elsevier, New York, pp 179–206

    Google Scholar 

  • Sessle BJ, Wiesendanger M (1982) Structural and functional definition of the motor cortex in the monkey (macaca-fascicularis). J Physiol Lond 323:245–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sessle B, Avivi-Arber L, Murray G (2013) Motor control of masticatory muscles. In: McLoon LK, Andrade F (eds) Craniofacial muscles. Springer, New York, pp 111–130

    Google Scholar 

  • Shaw CA, Bains JS, Pasqualotto BA, Curry K (1999) Methionine sulfoximine shows excitotoxic actions in rat cortical slices. Can J Physiol Pharmacol 77(11):871–877

    Article  CAS  PubMed  Google Scholar 

  • Sood M, Lee J-C, Avivi-Arber L, Bhatt P, Sessle JB (2014) Neuroplastic changes in the sensorimotor cortex associated with orthodontic tooth movement in rats. J Comp Neurol (under review)

  • Sunakawa M, Chiang CY, Sessle BJ, Hu JW (1999) Jaw electromyographic activity induced by the application of algesic chemicals to the rat tooth pulp. Pain 80(3):493–501

    Article  CAS  PubMed  Google Scholar 

  • Svensson P, Graven-Nielsen T (2001) Craniofacial muscle pain: review of mechanisms and clinical manifestations. J Orofac Pain 15(2):117–145

    CAS  PubMed  Google Scholar 

  • Svensson P, Miles TS, McKay D, Ridding MC (2003) Suppression of motor evoked potentials in a hand muscle following prolonged painful stimulation. Eur J Pain 7(1):55–62

    Article  PubMed  Google Scholar 

  • Swanson LW (2004) Brain maps: Structure of the rat brain, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Takeda M, Takahashi M, Nasu M, Matsumoto S (2010) In vivo patch-clamp analysis of response properties of rat primary somatosensory cortical neurons responding to noxious stimulation of the facial skin. Mol Pain 6:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96(2):512–521

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi Y, Iwata K, Dostrovsky JO, Chiang CY, Sessle BJ, Hu JW (2011) Modulation of astroglial glutamine synthetase activity affects nociceptive behaviour and central sensitization of medullary dorsal horn nociceptive neurons in a rat model of chronic pulpitis. Eur J Neurosci 34(2):292–302

    Article  CAS  PubMed  Google Scholar 

  • Varathan V, Sood M, Pun H, Awamleh L, Chocron D, Bhatt P et al (2014) Neuroplasticity of orofacial sensorimotor cortex induced by dental manipulations: are glial cells involved? Soc Neurosci Abstr 631

  • Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley, West Sussex

    Book  Google Scholar 

  • Wang H, Xie YF, Chiang CY, Dostrovsky JO, Sessle BJ (2013) Central α-adrenoceptors contribute to mustard oil-induced central sensitization in the rat medullary dorsal horn. Neuroscience 236:244–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Westberg KG, Clavelou P, Schwartz G, Lund JP (1997) Effects of chemical stimulation of masseter muscle nociceptors on trigeminal motoneuron and interneuron activities during fictive mastication in the rabbit. Pain 73(3):295–308

    Article  CAS  PubMed  Google Scholar 

  • Xie YF, Zhang S, Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ (2007) Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn). Brain Behav Immun 21(5):634–641

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Shih HC, Shyu BC (2006) Intracortical circuits in rat anterior cingulate cortex are activated by nociceptive inputs mediated by medial thalamus. J Neurophysiol 96(6):3409–3422

    Article  PubMed  Google Scholar 

  • Zhang S, Chiang CY, Xie YF, Park SJ, Lu Y, Hu JW et al (2006) Central sensitization in thalamic nociceptive neurons induced by mustard oil application to rat molar tooth pulp. Neuroscience 142(3):833–842

    Article  CAS  PubMed  Google Scholar 

  • Zielinska M, Stafiej A, Law RO, Albrecht J (2004) Effects of methionine sulfoximine on the glutamine and glutamate content and cell volume in rat cerebral cortical slices: involvement of mechanisms not related to inhibition of glutamine synthesis. Neurotoxicology 25(3):443–449

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding MC (1996) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol Lond 496(3):873–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ziemann U, Muellbacher W, Hallett M, Cohen LG (2001) Modulation of practice-dependent plasticity in human motor cortex. Brain 124:1171–1181

    Article  CAS  PubMed  Google Scholar 

  • Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4(2):103–119

    Article  CAS  Google Scholar 

  • Zwingmann C, Leibfritz D (2003) Regulation of glial metabolism studied by C-13-NMR. NMR Biomed 16(6–7):370–399

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The support of the Faculty of Dentistry Bertha Rosenstadt Endowment Fund, the CIHR grant MOP4918, the Canadian Foundation for Innovation, the Ontario Innovation Trust and Ministry of Technology and Innovation, and the Canada Research Chair program is gratefully acknowledged. We would also like to thank Professor Emeritus Jonathan Dostrovsky and Professor Barry J. Sessle for their advice on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Avivi-Arber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awamleh, L., Pun, H., Lee, JC. et al. Decreased face primary motor cortex (face-M1) excitability induced by noxious stimulation of the rat molar tooth pulp is dependent on the functional integrity of face-M1 astrocytes. Exp Brain Res 233, 1261–1272 (2015). https://doi.org/10.1007/s00221-015-4198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4198-8

Keywords

Navigation