Skip to main content
Log in

Visual detail about the body modulates tactile localisation biases

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The localisation of tactile stimuli requires the integration of visual and somatosensory inputs within an internal representation of the body surface and is prone to consistent bias. Joints may play a role in segmenting such internal body representations, and may therefore influence tactile localisation biases, although the nature of this influence remains unclear. Here, we investigate the relationship between conceptual knowledge of joint locations and tactile localisation biases on the hand. In one task, participants localised tactile stimuli applied to the dorsum of their hand. A distal localisation bias was observed in all participants, consistent with previous results. We also manipulated the availability of visual information during this task, to determine whether the absence of this information could account for the distal bias observed here and by Mancini et al. (Neuropsychologia 49:1194–1201, 2011). The observed distal bias increased in magnitude when visual information was restricted, without a corresponding decrease in precision. In a separate task, the same participants indicated, from memory, knuckle locations on a silhouette image of their hand. Analogous distal biases were also seen in the knuckle localisation task. The accuracy of conceptual joint knowledge was not correlated with tactile localisation bias magnitude, although a similarity in observed bias direction suggests that both tasks may rely on a common, higher-order body representation. These results also suggest that distortions of conceptual body representation may be more common in healthy individuals than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alloway KD, Rosenthal P, Burton H (1989) Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats. Exp Brain Res 78:514–532

    Article  CAS  PubMed  Google Scholar 

  • Azañón E, Longo MR, Soto-Faraco S, Haggard P (2010) The posterior parietal cortex remaps touch into external space. Curr Biol 20:1304–1309

    Article  PubMed  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, New York

    Google Scholar 

  • Berens P (2009) CircStat: a MATLAB toolbox for circular statistics. J Stat Softw 31:1–21

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge

    Google Scholar 

  • Boring EG (1942) Sensation and perception in the history of experimental psychology. Appleton-Century, New York

    Google Scholar 

  • Brooks VB, Rudomin P, Slayman CL (1961) Peripheral receptive fields of neurons in the cat’s cerebral cortex. J Neurophysiol 24:302–325

    Google Scholar 

  • Buxbaum LJ, Coslett HB (2001) Specialized structural descriptions for human body parts: evidence from autotopagnosia. Cogn Neuropsychol 18:289–306

    Article  CAS  PubMed  Google Scholar 

  • Cash TF, Deagle EA III (1997) The nature and extent of body-image disturbances in anorexia nervosa and bulimia nervosa: a meta-analysis. Int J Eat Disord 22:107–125

    Article  CAS  PubMed  Google Scholar 

  • Cholewiak RW, Collins AA (2003) Vibrotactile localization on the arm: effects of place, space and age. Percept Psychophys 65:1058–1077

    Article  PubMed  Google Scholar 

  • Cholewiak RW, Brill JC, Schwab A (2004) Vibrotactile localization on the abdomen: effects of place and space. Percept Psychophys 66:970–987

    Article  PubMed  Google Scholar 

  • Cody FW, Garside RA, Lloyd D, Poliakoff E (2008) Tactile spatial acuity varies with site and axis in the human upper limb. Neurosci Lett 433:103–108

    Article  CAS  PubMed  Google Scholar 

  • Critchley M (1953) The parietal lobes. Edward Arnold & Co, London

    Google Scholar 

  • Culver CM (1970) Errors in tactile localization. Am J Psychol 83:420–427

    Article  CAS  PubMed  Google Scholar 

  • de Vignemont F, Majid M, Jola C, Haggard P (2009) Segmenting the body into parts: evidence from biases in tactile perception. Q J Exp Psychol 62:500–512

    Article  Google Scholar 

  • Fuentes CT, Longo MR, Haggard P (2013) Body image distortions in healthy adults. Acta Psychol 144:344–351

    Article  Google Scholar 

  • Harrar V, Harris LR (2009) Eye position affects the perceived location of touch. Exp Brain Res 198:403–410

    Article  PubMed  Google Scholar 

  • Harrar V, Pritchett LM, Harris LR (2013) Segmented space: measuring tactile localisation in body coordinates. Multisens Res 26:3–18

    Article  PubMed  Google Scholar 

  • Harris JA, Thein T, Clifford CW (2004) Dissociating detection from localization of tactile stimuli. J Neurosci 24:3683–3693

    Article  CAS  PubMed  Google Scholar 

  • Kemmerer D, Tranel D (2008) Searching for the elusive neural substrates of body part terms: a neuropsychological study. Cogn Neuropsychol 25:601–629

    Article  PubMed Central  PubMed  Google Scholar 

  • Kennett S, Taylor-Clark M, Haggard P (2001) Noninformative vision improves the spatial resolution of touch in humans. Curr Biol 11:1188–1191

    Article  CAS  PubMed  Google Scholar 

  • Knight FLC, Longo MR, Bremner AJ (2014) Categorical perception of tactile distance. Cognition 131:254–262

    Article  Google Scholar 

  • Longo MR, Haggard P (2010) An implicit body representation underlying human position sense. Proc Natl Acad Sci USA 107:11727–11732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longo MR, Haggard P (2012) A 2.5-D representation of the human hand. J Exp Psychol Hum Percept Perform 38:9–13

    Article  PubMed  Google Scholar 

  • Mancini F, Longo MR, Iannetti GD, Haggard P (2011) A supramodal representation of the body surface. Neuropsychologia 49:1194–1201

    Article  PubMed  Google Scholar 

  • Moore CE, Schady W (1995) Cutaneous localisation of laser induced pain in humans. Neurosci Lett 193:208–210

    Article  CAS  PubMed  Google Scholar 

  • Pritchett LM, Harris LR (2011) Perceived touch location is coded using a gaze signal. Exp Brain Res 213:229–234

    Article  PubMed  Google Scholar 

  • Pritchett LM, Carnevale MJ, Harris LR (2012) Reference frames for coding touch location depend on the task. Exp Brain Res 222:437–445

    Article  PubMed  Google Scholar 

  • Sirigu A, Grafman J, Bressler K, Sunderland T (1991) Multiple representations contribute to body knowledge processing. Brain 114:629–642

    Article  PubMed  Google Scholar 

  • Steenbergen P, Buitenweg JR, Trojan J, Klaassen B, Veltink PH (2012) Subject-level differences in reported locations of cutaneous tactile and nociceptive stimuli. Front Hum Neurosci 6:325

    Article  PubMed Central  PubMed  Google Scholar 

  • Trojan J, Kleinböhl D, Stolle AM, Andersen OK, Hölzl R, Arendt-Nielsen L (2006) Psychophysical ‘perceptual maps’ of heat and pain sensations by direct localization of CO2 laser stimuli on the skin. Brain Res 1120:106–113

    Article  CAS  PubMed  Google Scholar 

  • Weber EH (1834/1996) De subtilitate tactus (H. E. Ross, Trans.). In: Ross HE, Murray DJ (eds) E. H. Weber on the tactile senses, 2nd edn (pp 21–128). Academic Press, London, pp 21–128

Download references

Acknowledgments

This research was supported by a Grant from the European Research Council (ERC-2013-StG-336050) to MRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Longo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margolis, A.N., Longo, M.R. Visual detail about the body modulates tactile localisation biases. Exp Brain Res 233, 351–358 (2015). https://doi.org/10.1007/s00221-014-4118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4118-3

Keywords

Navigation