Skip to main content
Log in

Muscle thixotropy as a tool in the study of proprioception

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When a muscle relaxes after a contraction, cross-bridges between actin and myosin in sarcomeres detach, but about 1 % spontaneously form new, non-force-generating attachments. These bridges give muscle its thixotropic property. They remain in place for long periods if the muscle is left undisturbed and give the muscle a passive stiffness in response to a stretch. They are detached by stretch, but reform at the new length. If the muscle is then shortened, the presence of these bridges prevents muscle fibres from shortening and they fall slack. So, resting muscle can be in one of two states, where it presents in response to a stretch with a high stiffness, if no slack is present, or with a compliant response in the presence of slack. Intrafusal fibres of muscle spindles show thixotropic behaviour. For spindles, after a conditioning contraction, they are left stretch sensitive, with a high level of background discharge. Alternatively, if after the contraction the muscle is shortened, intrafusal fibres fall slack, leaving spindles with a low level of background activity and insensitivity to stretch. Muscle spindles are receptors involved in the senses of human limb position and movement. The technique of muscle conditioning can be used to help understand the contribution of muscle spindles to these senses and how the brain interprets signals arising in spindles. When, in a two-arm position-matching task, elbow muscles of the two arms are deliberately conditioned in opposite ways, the blindfolded subject makes large position errors of which they are unaware. The evidence suggests that the brain is concerned with the difference signal coming from the antagonists acting at the elbow and with the overall difference in signal from the two arms. Another way of measuring position sense is to use a single arm and indicate its perceived position with a pointer. Here, there is no access to a signal from the other limb, and position sense relies on referral to a central map of the body, the postural schema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen TJ, Ansems GE, Proske U (2007) Effects of muscle conditioning on position sense at the human forearm during loading or fatigue of elbow flexors and the role of the sense of effort. J Physiol 580:423–434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allen TJ, Leung M, Proske U (2010) The effect of fatigue from exercise on human limb position sense. J Physiol 588:1369–1377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ansems GE, Allen TJ, Proske U (2006) Position sense at the human forearm in the horizontal plane during loading and vibration of elbow muscles. J Physiol 576:445–455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Banks RW, Barker D, Stacey MJ (1982) Form and distribution of sensory terminals in cat hindlimb muscle spindles. Phil Trans R Soc B 229:329–364

    Article  Google Scholar 

  • Bastian HC (1880) The brain as an organ of mind. Appleton, New York, p 18

    Google Scholar 

  • Bergenheim M, Ribot-Ciscar E, Roll JP (2000) Proprioceptive population coding of two-dimensional limb movements in humans. 1. Muscle spindle feedback during spatially oriented movements. Exp Brain Res 134:301–310

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Poppele RE, Eian J (2000) Reference frames for spinal proprioception: limb end-point based or joint level based? J Neurophysiol 83:2931–2945

    PubMed  CAS  Google Scholar 

  • Brown MC, Goodwin GM, Matthews PBC (1969) After-effects of fusimotor stimulation on the response of muscle spindle primary endings. J Physiol 205:677–694

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown LE, Rosenbaum DA, Sainsburg RL (2003) Limb position drift: implications for control of posture and movement. J Neurophysiol 90:3105–3118

    Article  PubMed  Google Scholar 

  • Burke D, Gandevia SC (1995) The human muscle spindle and its fusimotor control. In: Ferrell WR, Proske U (eds) Neural control of movement. Plenum Press, NY, pp 19–25

    Chapter  Google Scholar 

  • Campbell KS, Lakie M (1998) A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle. J Physiol 510:941–962

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Capaday C, Cooke JD (1983) Vibration induced changes in movement-related EMG activity in humans. Exp Brain Res 52:139–146

    Article  PubMed  CAS  Google Scholar 

  • Clark FJ, Burgess RC, Chapin JW, Lipscomb WT (1985) Role of intramuscular receptors in the awareness of limb position. J Neurophysiol 54:1529–1540

    PubMed  CAS  Google Scholar 

  • Denny-Brown D (1929) On the nature of postural reflexes. Proc R Soc B 104:252–301

    Article  Google Scholar 

  • Edin BB, Vallbo AB (1988) Stretch sensitisation of human muscle spindles. J Physiol 400:101–111

    PubMed  CAS  PubMed Central  Google Scholar 

  • Emonet-Denand F, Hunt CC, Laporte Y (1985) Effects of stretch on dynamic fusimotor after-effects in cat muscle spindles. J Physiol 360:201–213

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fuentes CT, Bastian AJ (2010) Where is your arm? Variations in proprioception across space and tasks. J Neurophysiol 103:164–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilhodes JC, Roll JP, Tardy-Gervet MF (1986) Perceptual and motor effects of agonist-antagonist muscle vibration in man. Exp Brain Res 61:395–402

    Article  PubMed  CAS  Google Scholar 

  • Givoni NJ, Pham T, Allen TJ, Proske U (2007) The effect of quadriceps muscle fatigue on position matching at the knee. J Physiol 584:111–119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • González-Serratos H (1971) Inward spread of activation in vertebrate muscle fibres. J Physiol 212(3):777–799

  • Goodwin GM, McCloskey DI, Matthews PBC (1972) The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing the joint afferents. Brain 95:705–748

    Article  PubMed  CAS  Google Scholar 

  • Gooey K, Bradfield O, Talbot J, Morgan DL, Proske U (2000) Effects of body orientation, load and vibration on sensing position and movement at the human elbow joint. Exp Brain Res 133:340–348

    Article  PubMed  CAS  Google Scholar 

  • Gregory JE, Morgan DL, Proske U (1986) After-effects in the responses of cat muscle spindles. J Neurophysiol 56:451–461

    PubMed  CAS  Google Scholar 

  • Gregory JE, Morgan DL, Proske U (1987) Changes in size of the stretch reflex of cat and man attributed to after-effects in muscle spindles. J Neurophysiol 58:628–640

    PubMed  CAS  Google Scholar 

  • Gregory JE, Morgan DL, Proske U (1988) After-effects in the responses of cat muscle spindles and errors in limb position sense in man. J Neurophysiol 59:1220–1230

    PubMed  CAS  Google Scholar 

  • Gregory JE, Mark RF, Morgan DL, Patak A, Polus B, Proske U (1990) Effects of muscle history on the stretch reflex in cat and man. J Physiol 424:93–107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gregory JE, Wise AK, Wood SA, Prochazka A, Proske U (1998) Muscle history, fusimotor activity and the human stretch reflex. J Physiol 513:927–934

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hagbarth KE, Hugglund JV, Nordin M, Wallin EU (1985) Thixotropic behaviour of human finger flexor muscles with accompanying changes in spindle and reflex responses to stretch. J Physiol 368:323–342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hakuta N, Izumizaki M, Kigawa K, Murai N, Atsumi T, Homma I (2014) Proprioceptive illusions created by vibration of one arm are altered by vibration of the other arm. Exp Brain Res 232:2197–2206

    Article  PubMed  Google Scholar 

  • Hall LA, McCloskey DI (1983) Detection of movements imposed on finger, elbow and shoulder joints. J Physiol 335:519–533

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harrison PJ (1988) After-effects following responses of a muscle stretch receptor of the shore crab, Carcinus moenas. Neurosci Lett 88:211–215

    Article  PubMed  CAS  Google Scholar 

  • Herbert RD, Clarke J, Kwah LK, Diong M, Clarke EC, Bilston LE, Gandevia SC (2011) In vivo passive mechanical behaviour of muscle fascicles and tendons in human gastrocnemius muscle-tendon units. J Physiol 589:5257–5267

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hill DK (1968) Tension due to interaction between the sliding filaments in resting striated muscle. The effect of stimulation. J Physiol 199:637–684

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hultborn H, Illert M, Nielsen J, Paul A, Ballegard M, Wiese H (1996) On the mechanism of the post-activation depression of the H reflex in human subjects. Exp Brain Res 108:450–462

    Article  PubMed  CAS  Google Scholar 

  • Hunt CC, Kuffler SW (1951) Further study of efferent small-nerve fibres to mammalian muscle spindles. Multiple spindle innervations and activity during contraction. J Physiol 113:283–297

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inui N, Walsh LD, Gandevia SC (2011) Dynamic changes in the perceived posture of the hand during ischaemic anaesthesia of the arm. J Physiol 589:5775–5784

    PubMed  CAS  PubMed Central  Google Scholar 

  • Izumizaki M, Tsuge M, Akai L, Proske U, Homma I (2010) The illusion of changed position and movement from vibrating one arm is altered by vision or movement of the other arm. J Physiol 588:2789–2800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jahnke MT, Proske U, Struppler A (1989) Measurements of muscle stiffness, the electromyogram and activity in single muscle spindles of human flexor muscles following conditioning by passive stretch or contraction. Brain Res 493:103–112

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C (1997) Folding-unfolding transitions in single titin molecules characterised with laser tweezers. Science 276:1112–1116

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Bianco P, Martonfalvi Z, Nagy A, Kengyel A, Szatmari D, Huber T, Linari M, Caremani M, Lombardi V (2008) Muscle thixotropy: more than just cross bridges? Response to comment by Campbell and Lakie. Biophys J 94:329–330

    Article  CAS  PubMed Central  Google Scholar 

  • Kuffler SW, Hunt CC, Quilliam JP (1951) Function of medullated small-nerve fibres in mammalian ventral roots: efferent muscle spindle innervation. J Neurophysiol 14:29–54

    PubMed  CAS  Google Scholar 

  • Lakie M, Walsh EG, Wright GW (1984) Resonance at the wrist demonstrated by the use of a torque motor: an instrumental analysis of muscle tone in man. J Physiol 353:265–285

    PubMed  CAS  PubMed Central  Google Scholar 

  • Longo MR, Haggard P (2010) An implicit body representation underlying human position sense. Proc Natl Acad Sci USA 107:11727–11732

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Longo MR, Kammers MPM, Gomi H, Tsakiris M, Haggard P (2009) Contraction of body representation induced by proprioceptive conflict. Current Biol 19(17):R727–R728

    Article  CAS  Google Scholar 

  • Luu BL, Day BL, Cole JD, Fitzpatrick RC (2011) The fusimotor and reafferent origin of the sense of force and weight. J Physiol 589:3135–3147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matthews PBC (1964) Muscle spindles and their motor control. Physiol Rev 44:219–288

    PubMed  CAS  Google Scholar 

  • McCloskey DI (1973) Differences between the senses of movement and position shown by the effects of loading and vibration of muscles in man. Brain Res 61:119–131

    Article  PubMed  CAS  Google Scholar 

  • Morgan DL (1990) New insights into the behaviour of muscle during active lengthening. Biophys J 57:209–221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morgan DL, Prochazka A, Proske U (1984) The after-effects of stretch and fusimotor stimulation on the responses of primary endings of cat muscle spindles. J Physiol 356:465–477

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moss RL, Sollins MR, Julian FJ (1976) Calcium activation produces a characteristic response to stretch in both skeletal and cardiac muscle. Nature 260:619–621

    Article  PubMed  CAS  Google Scholar 

  • Paillard J, Brouchon M (1968) Active and passive movements in the calibration of position sense. In: Freeman S (ed) The neuropsychology of spatially oriented behaviour. Dorsey, Homewood, pp 37–55

    Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Polus BI, Patak A, Gregory JE, Proske U (1991) Effect of muscle length on phasic stretch reflexes in humans and cats. J Neurophysiol 66:613–622

    PubMed  CAS  Google Scholar 

  • Proske U (1995) Recent developments in the physiology of the mammalian muscle spindle. In: Ferrell WR, Proske U (eds) Neural control of movement. Plenum Press, London, pp 11–18

    Chapter  Google Scholar 

  • Proske U, Gandevia SC (2009) The kinaesthetic senses. J Physiol 587:4139–4146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signalling body shape, body position and movement and muscle force. Physiol Rev 92:1651–1697

    Article  PubMed  CAS  Google Scholar 

  • Proske U, Morgan DL (1999) Do cross-bridges contribute to the tension during stretch of passive muscle. J Muscle Res Cell Motility 20:433–442

    Article  CAS  Google Scholar 

  • Proske U, Stuart GJ (1985) The initial burst of impulses in responses of toad muscle spindles during stretch. J Physiol 368:1–17

    PubMed  CAS  PubMed Central  Google Scholar 

  • Proske U, Morgan DL, Gregory JE (1992) Muscle history dependence of responses to stretch of primary and secondary endings of cat soleus muscle spindles. J Physiol 445:81–95

    PubMed  CAS  PubMed Central  Google Scholar 

  • Proske U, Morgan DL, Gregory JE (1993) Thixotropy in skeletal muscle and in muscle spindles: a review. Prog Neurobiol 41(6):705–721

    Article  PubMed  CAS  Google Scholar 

  • Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 76:213–222

    Article  PubMed  CAS  Google Scholar 

  • Smith JL, Crawford M, Proske U, Taylor JL, Gandevia SC (2009) Signals of motor command bias joint position sense in the presence of feedback from proprioceptors. J Appl Physiol 106:950–958

    Article  PubMed  Google Scholar 

  • Stuart M, Butler JE, Collins DF, Taylor JL, Gandevia SC (2002) The history of contraction of the wrist flexors can change cortical excitability. J Physiol 545:731–737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Taylor JL, McCloskey DI (1992) Detection of slow movements imposed at the elbow during active flexion in man. J Physiol 457:503–513

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tsay A, Allen TJ, Leung M, Proske U (2012) The fall in force after exercise disturbs position sense at the human forearm. Exp Brain Res 222:415–425

    Article  PubMed  Google Scholar 

  • Tsay A, Savage G, Allen TJ, Proske U (2014) Limb position sense, proprioceptive drift and muscle thixotropy at the human elbow joint. J Physiol 592(12):2679–2694

    PubMed  CAS  Google Scholar 

  • Vallbo AB (1971) Muscle spindle response at the onset of isometric voluntary contractions in man. Time difference between fusimotor and skeletomotor effects. J Physiol 218:405–431

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vallbo AB (1974) Afferent discharge from human muscle spindles in non-contracting muscles. Steady state impulse frequency as a function of joint angle. Acta Physiol Scand 90:303–318

    Article  PubMed  CAS  Google Scholar 

  • Walsh LD, Proske U, Allen TJ, Gandevia SC (2013) The contribution of motor commands to position sense differs between elbow and wrist. J Physiol 591:6103–6114

    Article  PubMed  CAS  Google Scholar 

  • Wann JP, Ibrahim SF (1992) Does limb position drift? Exp Brain Res 91:162–166

    Article  PubMed  CAS  Google Scholar 

  • White O, Proske U (2009) Illusions of forearm displacement during vibration of elbow muscles in humans. Exp Brain Res 192:113–120

    Article  PubMed  Google Scholar 

  • Whitehead NP, Gregory JE, Morgan DL, Proske U (2001) Passive mechanical properties of the medial gastrocnemius muscle of the cat. J Physiol 536:893–903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wiegner AW (1987) Mechanism of thixotropic behaviour at relaxed joints in the rat. J Appl Physiol 62:1615–1621

    PubMed  CAS  Google Scholar 

  • Wilson LR, Gandevia SC, Burke D (1995) Increased resting discharge of human spindle afferents following voluntary contractions. J Physiol 488:833–840

    PubMed  CAS  PubMed Central  Google Scholar 

  • Winter JA, Allen TJ, Proske U (2005) Muscle spindle signals combine with the sense of effort to indicate limb position. J Physiol 568:1035–1046

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wise AK, Gregory JE, Proske U (1996) The effects of muscle conditioning on movement detection thresholds at the human forearm. Brain Res 735:125–130

    Article  PubMed  CAS  Google Scholar 

  • Wise AK, Gregory JE, Proske U (1998) Detection of movements of the human forearm during and after co-contractions of muscles acting at the elbow joint. J Physiol 508:325–330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wise AK, Gregory JE, Proske U (1999) The responses of muscle spindles to small, slow movements in passive muscle and during fusimotor activity. Brain Res 821:87–94

    Article  PubMed  CAS  Google Scholar 

  • Wood SA, Gregory JE, Proske U (1996) The influence of muscle spindle discharge on the human H reflex and the monosynaptic reflex in the cat. J Physiol 497:279–290

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Proske.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proske, U., Tsay, A. & Allen, T. Muscle thixotropy as a tool in the study of proprioception. Exp Brain Res 232, 3397–3412 (2014). https://doi.org/10.1007/s00221-014-4088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4088-5

Keywords

Navigation