Skip to main content
Log in

Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In goal-oriented locomotion, healthy adults generate highly stereotyped trajectories and a consistent anticipatory head orienting behaviour, both evidence of top-down, open-loop control. The aim of this study is to describe the typical development of anticipatory orienting strategies and trajectory formation. Our hypothesis is that full-blown anticipatory control requires advanced navigational skills. Twenty-six healthy subjects (14 children: 4–11 years; 6 adolescents: 13–17 years; 6 adults) were asked to walk freely towards one of the three visual targets, in a randomised order. Movement was captured via an optoelectronic system, with 15 body markers. The whole-body displacement, yaw orientation of head, trunk and pelvis, heading direction and foot placements were extracted. Head-heading anticipation, trajectory curvature, indexes of variability of trajectories, foot placements and kinematic profiles were studied. The mean head-heading anticipation time and trajectory curvature did not significantly differ among age groups. In children, however, head anticipation was more often lacking (χ 2 = 9.55, p < 0.01), and there were significant intra- and inter-subject variations. Trajectory curvature was often very high in children, while it became consistently lower in adolescence (χ 2 = 78.59, p < 10−17). The indexes of spatial and kinematic variability all followed a decreasing developmental trend (R 2 > 0.5, p < 0.0001). In conclusion, children under 11 do not perform curvilinear locomotor trajectories as adolescents and adults do. Anticipatory head orientation and trajectory formation develop in late childhood, well after gait maturation. Navigational skills, such as path planning and shifting from ego- to allocentric spatial reference frames, are proposed as necessary requisites for mature locomotor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamovich SV, Archambault PS, Ghafouri M, Levin MF, Poizner H, Feldman AG (2001) Hand trajectory invariance in reaching movements involving the trunk. Exp Brain Res 138:288–303

    PubMed  CAS  Google Scholar 

  • Arechavaleta G, Laumond JP, Hicheur H, Berthoz A (2008) An optimality principle governing human walking. IEEE Trans Robot 24:514

    Google Scholar 

  • Assaiante C (1998) Development of locomotor balance control in healthy children. Neurosci Biobehav Rev 22:527–532

    PubMed  CAS  Google Scholar 

  • Assaiante C, Mallau S, Viel S, Jover M, Schmitz C (2005) Development of Postural Control in Healthy Children: a Functional Approach. Neural Plast 12:109–118; discussion 263–272. doi:10.1155/NP.2005.109

    Google Scholar 

  • Battaglia-Mayer A, Caminiti R, Lacquaniti F, Zago M (2003) Multiple levels of representation of reaching in the parieto-frontal network. Cereb Cortex 13:1009–1022

    PubMed  Google Scholar 

  • Beck RJ, Andriacchi TP, Kuo KN, Fermier RW, Galante JO (1981) Changes in the gait patterns of growing children. J Bone Jt Surg Am 63:1452–1457

    CAS  Google Scholar 

  • Bennequin D, Fuchs R, Berthoz A, Flash T (2009) Movement timing and invariance arise from several geometries. PLoS Comput Biol 5:1–27. doi:10.1371/journal.pcbi.1000426

    Google Scholar 

  • Bernardin D, Kadone H, Bennequin D, Sugar T, Zaoui M, Berthoz A (2012) Gaze anticipation during human locomotion. Exp Brain Res 223:65–78. doi:10.1007/s00221-012-3241-2

    PubMed  Google Scholar 

  • Bernstein NA (1967) The co-ordination and regulation of movements, 1st edn. Pergamon Press, Oxford

    Google Scholar 

  • Bullens J, Iglói K, Berthoz A, Postma A, Rondi-Reig L (2010) Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. J Exp Child Psychol 107:337–350. doi:10.1016/j.jecp.2010.05.010

    PubMed  Google Scholar 

  • Carrozzo M, Stratta F, McIntyre J, Lacquaniti F (2002) Cognitive allocentric representations of visual space shape pointing Errors. Exp Brain Res 147:426–436

    PubMed  CAS  Google Scholar 

  • Cheron G, Bouillot E, Dan B, Bengoetxea A, Draye JP, Lacquaniti F (2001a) Development of a kinematic coordination pattern in toddler locomotion: planar covariation. Exp Brain Res 137:455–466

    PubMed  CAS  Google Scholar 

  • Cheron G, Bengoetxea A, Bouillot E, Lacquaniti F, Dan B (2001b) Early emergence of temporal co-ordination of lower limb segments elevation angles in human locomotion. Neurosci Lett 308:123–127

    PubMed  CAS  Google Scholar 

  • Cinelli M, Warren WH (2012) Do walkers follow their heads? Investigating the role of head rotation in locomotor control. Exp Brain Res 219:175–190. doi:10.1007/s00221-012-3077-9

    PubMed  Google Scholar 

  • Courtine G, Schieppati M (2003) Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. Eur J Neurosci 18:177–190. doi:10.1046/j.1460-9568.2003.02736.x

    PubMed  Google Scholar 

  • Dominici N, Ivanenko YP, Cappellini G, D’Avella A, Mondì V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999. doi:10.1126/science.1210617

    PubMed  CAS  Google Scholar 

  • Fajen BR, Warren WH (2003) Behavioral dynamics of steering, obstacle avoidance, and route selection. J Exp Psychol Hum Percept Perform 29:343–362

    PubMed  Google Scholar 

  • Forssberg H (1985) Ontogeny of human locomotor control I. Infant stepping, supported locomotion and transition to independent locomotion. Exp Brain Res 57:480–493

    PubMed  CAS  Google Scholar 

  • Grasso R, Assaiante C, Prévost P, Berthoz A (1998a) Development of anticipatory orienting strategies during locomotor tasks in children. Neurosci Biobehav Rev 22:533–539

    PubMed  CAS  Google Scholar 

  • Grasso R, Prévost P, Ivanenko YP, Berthoz A (1998b) Eye-head coordination for the steering of locomotion in humans: an anticipatory synergy. Neurosci Lett 253:115–118

    PubMed  CAS  Google Scholar 

  • Grillner S, Wallén P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of goal-directed locomotion in vertebrates—an overview. Brain Res Rev 57:2–12. doi:10.1016/j.brainresrev.2007.06.027

    PubMed  Google Scholar 

  • Hicheur H, Vieilledent S, Berthoz A (2005a) Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms. Neurosci Lett 383:87–92. doi:10.1016/j.neulet.2005.03.046

    PubMed  CAS  Google Scholar 

  • Hicheur H, Vieilledent S, Richardson MJE, Flash T, Berthoz A (2005b) Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements. Exp Brain Res 162:145–154

    PubMed  CAS  Google Scholar 

  • Hicheur H, Pham QC, Arechavaleta G, Laumond JP, Berthoz A (2007) The formation of trajectories during goal-oriented locomotion in Humans. I. A stereotyped behaviour. Eur J Neurosci 26:2376–2390. doi:10.1111/j.1460-9568.2007.05836.x

    PubMed  Google Scholar 

  • Hollands MA, Sorensen KL, Patla AE (2001) Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering. Exp Brain Res 140:223–233. doi:10.1007/s002210100811

    PubMed  CAS  Google Scholar 

  • Hollands MA, Patla AE, Vickers JN (2002) Look where you’re going!’: gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res 143:221–230. doi:10.1007/s00221-001-0983-7

    PubMed  CAS  Google Scholar 

  • Imai T, Moore ST, Raphan T, Cohen B (2001) Interaction of body, head, and eyes during walking and turning. Exp Brain Res 136:1–18

    PubMed  CAS  Google Scholar 

  • Ivanenko YP, Dominici N, Cappellini G, Lacquaniti F (2005) Kinematics in newly walking toddlers does not depend upon postural stability. J Neurophysiol 94:754–763. doi:10.1152/jn.00088.2005

    PubMed  Google Scholar 

  • Ivanenko YP, D’Avella A, Poppele RE, Lacquaniti F (2008) On the origin of planar covariation of elevation angles during human locomotion. J Neurophysiol 99:1890–1898. doi:10.1152/jn.01308.2007

    PubMed  CAS  Google Scholar 

  • Jahn K, Wagner J, Deutschländer A, Kalla R, Hüfner K, Stephan T, Strupp M, Brandt T (2009) Human hippocampal activation during stance and locomotion fMRI study on healthy, blind, and vestibular-loss subjects. Ann N Y Acad Sci 1164:229–235. doi:10.1111/j.1749-6632.2009.03770.x

    PubMed  Google Scholar 

  • Marigold DS, Patla AE (2007) Gaze fixation patterns for negotiating complex ground terrain. Neurosci 144:302–313

    CAS  Google Scholar 

  • Marigold DS, Patla AE (2008) Visual information from the lower visual field is important for walking across multi-surface terrain. Exp Brain Res 188:23–31. doi:10.1007/s00221-008-1335-7

    PubMed  Google Scholar 

  • Massion J (1998) Postural control systems in developmental perspective. Neurosci 22:465–472

    CAS  Google Scholar 

  • Messier J, Adamovich S, Berkinblit M, Tunik E, Poizner H (2003) Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject. Exp Brain Res 150:399–416. doi:10.1007/s00221-003-1413-9

    PubMed  Google Scholar 

  • Patla AE, Vickers JN (2003) How far ahead do we look when required to step on specific locations in the travel path during locomotion? Exp Brain Res 148:133–138. doi:10.1007/s00221-002-1246-y

    PubMed  Google Scholar 

  • Patla AE, Adkin A, Ballard T (1999) Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res 129:629–634

    PubMed  CAS  Google Scholar 

  • Pham QC, Hicheur H (2011) On the open-loop and feedback processes that underlie the formation of trajectories during visual and nonvisual locomotion in humans. J Neurophysiol 102:2800–2815. doi:10.1152/jn.00284.2009

    Google Scholar 

  • Pham QC, Hicheur H, Arechavaleta G, Laumond JP, Berthoz A (2007) The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur J Neurosci 26:2391–2403. doi:10.1111/j.1460-9568.2007.05835.x

    PubMed  Google Scholar 

  • Pham QC, Berthoz A, Hicheur H (2011) Invariance of locomotor trajectories across visual and gait direction conditions. Exp Brain Res 210:207–215. doi:10.1007/s00221-011-2619-x

    PubMed  Google Scholar 

  • Poirel N, Vidal M, Pineau A, Lanoë C, Leroux G, Lubin A, Turbelin MR, Berthoz A, Houdé O (2011) Evidence of different developmental trajectories for length estimation according to egocentric and allocentric viewpoints in children and adults. Exp Psychol 58:142–146. doi:10.1027/1618-3169/a000079

    PubMed  Google Scholar 

  • Pozzo T, McIntyre J, Cheron G, Papaxanthis C (1998a) Hand trajectory formation during whole body reaching movements in man. Neurosci Lett 240:159–162

    PubMed  CAS  Google Scholar 

  • Pozzo T, Papaxanthis C, Stapley P, Berthoz A (1998b) The sensorimotor and cognitive integration of gravity. Brain Res Rev 28:92–101

    PubMed  CAS  Google Scholar 

  • Prévost P, Ivanenko Y, Grasso R, Berthoz A (2002) Spatial invariance in anticipatory orienting behaviour during human navigation. Neurosci Lett 339:243–247

    Google Scholar 

  • Richardson MJE, Flash T (2002) Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis. J Neurosci 22:8201–8211

    PubMed  CAS  Google Scholar 

  • Roncesvalles MN, Schmitz C, Zedka M, Assaiante C, Woollacott M (2005) From egocentric to exocentric spatial orientation: development of posture control in bimanual and trunk inclination Tasks. J Mot Behav 37:404–416

    PubMed  Google Scholar 

  • Sreenivasa MN, Frissen I, Souman JL, Ernst MO (2008) Walking along curved paths of different angles: the relationship between head and trunk turning. Exp Brain Res 191:313–320. doi:10.1007/s00221-008-1525-3

    PubMed  Google Scholar 

  • Sutherland DH, Olshen R, Cooper L, Woo SL (1980) The development of mature gait. J Bone Jt Surg Am 62:336–353

    CAS  Google Scholar 

  • Vallis LA, McFadyen BJ (2005) Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path. Exp Brain Res 167:119–127. doi:10.1007/s00221-005-0054-6

    PubMed  Google Scholar 

  • Vaughan CL, Langerak NG, Omalley MJ (2003) Neuromaturation of human locomotion revealed by non-dimensional scaling. Exp Brain Res 153:123–127. doi:10.1007/s00221-003-1635-x

    PubMed  Google Scholar 

  • Vieilledent S, Hicheur H, Ducourant T, Kerlirzin Y, Berthoz A (2005) La Génération De Trajectoires Locomotrices Chez L’homme. In: Thinus-Blanc C, Bullier J (eds) Agir Dans L’espace. Edition de la maison des sciences de l’homme, Paris, pp 169–191

    Google Scholar 

  • Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics. Neurosci 7:431–437

    CAS  Google Scholar 

  • Wagner J, Stephan T, Kalla R, Brückmann H, Strupp M, Brandt T, Jahn K (2008) Mind the bend: cerebral activations associated with mental imagery of walking along a curved path. Exp Brain Res 191:247–255. doi:10.1007/s00221-008-1520-8

    PubMed  Google Scholar 

  • Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgments

This research was made possible by PACE grant from La Fondation Motrice—Sodiaal (Paris, France) to AB and GC, by RC 2011 grant from the Italian Ministry of Health to GC and by scholarship support to VB from La Fondation Motrice. The authors thank Vincent Corsentino for reviewing the English of the manuscript.

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Cioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmonti, V., Cioni, G. & Berthoz, A. Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion. Exp Brain Res 227, 131–147 (2013). https://doi.org/10.1007/s00221-013-3495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3495-3

Keywords

Navigation