Skip to main content
Log in

Violating the main sequence: asymmetries in saccadic peak velocities for saccades into the temporal versus nasal hemifields

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Saccadic peak velocities during monocular and binocular presentation were tested. While the main sequence linear increase in peak velocities as a function of saccade amplitude is well documented, our results provide demonstrations of violations of the main sequence. Peak velocities during monocular presentation were considerably higher toward temporal than nasal stimuli. This nasal–temporal asymmetry (NTA) was not explained by amplitude differences and was most pronounced for the lowest amplitudes tested, decreasing with increased amplitude. Under binocular presentation, this NTA was much smaller. While the exact reasons for this difference in peak velocities between hemifields are unclear at present, we propose that anatomical NTAs result in stronger signals from the nasal, than temporal retina leading to higher peak velocities into the temporal visual hemifield. NTAs in peak velocity are consistent with NTAs in attentional choice and in attentional function, which might also be explained by anatomical NTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In experiments 1 and 2 in Jóhannesson et al. (2012), a very different task involving interleaved centripetal, centrifugal, abducting, and adducting saccades was used, so data from those experiments are not included here.

  2. Exogenous attention and discrimination tasks will not be further discussed here since they are irrelevant to the current topic.

  3. Caution is needed for predictions of PV values at the outermost points in the graphs since they represent relatively few data points, especially for the higher amplitudes (toward the right of the graphs).

  4. The regression equation for the chosen model is: y = intercept + amplitudeSlope × amplitude + hemifieldSlope × hemifield + interactionSlope × amplitude × hemifield. To take an example a calculation for 5° amplitude and a saccade into the temporal hemifield yields: 187.2 + 19.8 × 5 + 47.8 × 1 + (−7.7 × 5 × 1) = 295.5°/s.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59:390–412. doi:10.1016/j.jml.2007.12.005

    Article  Google Scholar 

  • Bahill A, Clark M, Stark L (1975) The main sequence, a tool for studying human eye movements. Math Biosci 24:191–204

    Article  Google Scholar 

  • Bates D (2010) lme4: mixed-effects modelling with R. http://lme4.r-forge.r-project.org/book/

  • Becker W (1991) Saccades. In: Carpenter RHS (ed) Vision and visual dysfunction: vol 8, Eye movements. CRC, Boca Raton, pp 95–137

    Google Scholar 

  • Beydagi H, Yilmaz A, Süer C (1999) The effect of direction on saccadic eye movement parameters. J Basic Clin Physiol Pharmacol 10:73–77

    Article  PubMed  CAS  Google Scholar 

  • Boghen D, Troost B, Daroff RB et al (1974) Velocity characteristics of normal human saccades. Investig Ophthalmol Vis Sci 13:619–623

    CAS  Google Scholar 

  • Bompas A, Sterling T, Rafal RD, Sumner P (2008) Naso-temporal asymmetry for signals invisible to the retinotectal pathway. J Neurophysiol 100(1):412–421

    Article  PubMed  Google Scholar 

  • Burnham K, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Cambridge Research Systems (2006) Video eyetracker toolbox, user manual. Cambridge Research Systems, Rochester

    Google Scholar 

  • Collewijn H, Erkelens C, Steinman R (1988) Binocular co-ordination of human horizontal saccadic eye movements. J Physiol 404(1):157–182

    PubMed  CAS  Google Scholar 

  • Cullen KE, Van Horn MR (2011) Brainstem pathways and premotor control. In: Liversedge L, Gilchrist ID, Everling S (eds) Oxford handbook of eye movements. Oxford University Press, Oxford, pp 151–172

    Google Scholar 

  • Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300(1):5–25

    Article  PubMed  CAS  Google Scholar 

  • Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36(12):1827–1837

    Article  PubMed  CAS  Google Scholar 

  • Dixon P (2008) Models of accuracy in repeated-measures designs. J Mem Lang 59:447–456

    Article  Google Scholar 

  • Dodds C, Machado L, Rafal R, Ro T (2002) A temporal/nasal asymmetry for blindsight in a localisation task: evidence for extrageniculate mediation. NeuroReport 13(5):655–658

    Article  PubMed  Google Scholar 

  • Doubell TP, Skaliora I, Baron J, King AJ (2003) Functional connectivity between the superficial and deeper layers of the superior colliculus: an anatomical substrate for sensorimotor integration. J Neurosci 23(16):6596–6607

    PubMed  Google Scholar 

  • Fahle M, Schmid M (1988) Naso-temporal asymmetry of visual perception and of the visual cortex. Vis Res 28(2):293–300

    Article  PubMed  CAS  Google Scholar 

  • Fricker SJ (1971) Dynamic measurements of horizontal eye motion I. Acceleration and velocity matrices. Invest Ophthalmol Vis Sci 10:724–732

    CAS  Google Scholar 

  • Furuya N, Yabe T, Chiba Y (1986) Predominance of nasal over temporal saccades in fast eye movement. Auris Nasus Larynx (Tokyo) 13:53–62

    Article  Google Scholar 

  • Greenberg G (1960) Eye-dominance and head-tilt. Am J Psychol 73(1):149–151

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percep Psychophys 57(6):787–795

    Article  CAS  Google Scholar 

  • Honda H (2002) Idiosyncratic left-right asymmetries of saccadic latencies: examination in a gap paradigm. Vis Res 42:1437–1445

    Article  PubMed  Google Scholar 

  • Hubel D, LeVay S, Wiesel T (1975) Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Res 96(1):25–40

    Article  PubMed  CAS  Google Scholar 

  • Itaya SK, Van Hoesen GW (1983) Retinal projections to the inferior and medial pulvinar nuclei in the old-world monkey. Brain Res 269(2):223–230

    Article  PubMed  CAS  Google Scholar 

  • Jóhannesson ÓI, Ásgeirsson ÁG, Kristjánsson Á (2012) Saccade performance in the nasal and temporal hemifields. Exp Brain Res 219(1):107–120. doi:10.1007/s00221-012-3071-2

    Article  PubMed  Google Scholar 

  • Johnston K, Everling S (2011) Frontal cortex and flexible control of saccades. In: Liversedge L, Gilchrist ID, Everling S (eds) Oxford handbook of eye movements. Oxford University Press, Oxford, pp 279–302

    Google Scholar 

  • Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35(13):1897–1916

    Article  PubMed  CAS  Google Scholar 

  • Kristjánsson Á (2007) Saccade landing point selection and the competition account of pro- and antisaccade generation: the involvement of visual attention? A review. Scand J Psychol 48:97–113. doi:10.1111/j.1467-9450.2007.00537.x

    Article  PubMed  Google Scholar 

  • Kristjánsson Á (2009) Learning in shifts of transient attention improves recognition of parts of ambiguous figure-ground displays. J Vis 9(4):1–11

    Article  PubMed  Google Scholar 

  • Kristjánsson Á (2011) The intriguing interactive relationship between visual attention and saccadic eye movements. In: Liversedge L, Gilchrist ID, Everling S (eds) Oxford handbook of eye movements. Oxford University Press, Oxford, pp 455–470

    Google Scholar 

  • Kristjansson A, Nakayama K (2003) A primitive memory system for the deployment of transient attention. Percep Psychophys 65:711–724

    Article  Google Scholar 

  • Kristjansson A, Chen Y, Nakayama K (2001) Less attention is more in the preparation of antisaccades, but not prosaccades. Nat Neurosci 4(10):1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Kristjansson A, Vandenbroucke M, Driver J (2004) When pros become cons for anti-versus prosaccades: factors with opposite or common effects on different saccade types. Exp Brain Res 155(2):231–244

    Article  PubMed  Google Scholar 

  • Kustov AA, Robinson DL (1996) Shared neural control of attentional shifts and eye movements. Nature 384:74–77

    Article  PubMed  CAS  Google Scholar 

  • Leigh R, Zee D (2006) The neurology of eye movements. Oxford University Press, Oxford

    Google Scholar 

  • Posner MI, Cohen Y (1980) Attention and control of movements. In: Stelmach GE, Region J (eds) Tutorials in motor behavior. North Holland Publishing, Amsterdam, pp 243–258

    Chapter  Google Scholar 

  • Rafal R, Calabresi P, Brennan C, Sciolto T (1989) Saccade preparation inhibits reorienting to recently attended locations. J Exp Psychol Hum Percep Perform 15(4):673–685

    Article  CAS  Google Scholar 

  • Rafal RD, Henik A, Smith J (1991) Extrageniculate contributions to reflex visual orienting in normal humans: a temporal hemifield advantage. J Cogn Neurosci 3(4):322–328

    Article  Google Scholar 

  • Robinson DA (1964) The mechanics of human saccadic eye movement. J Physiol 174:245–264

    PubMed  CAS  Google Scholar 

  • Rohrschneider K (2004) Determination of the location of the fovea on the fundus. Invest Ophthalmol Vis Sci 45(9):3257–3258. doi:10.1167/iovs.03-1157

    Article  PubMed  Google Scholar 

  • Rolfs M, Vitu F (2007) On the limited role of target onset in the gap task: support for the motor-preparation hypothesis. J Vis 7(10):1–20. doi:10.1167/7.10.7

    Article  PubMed  Google Scholar 

  • Sparks DL (2002) The brainstem control of saccadic eye movements. Nature Rev Neurosci 3:952–964

    Article  CAS  Google Scholar 

  • Sterling P (1973) Quantitative mapping with the electron microscope: retinal terminals in the superior colliculus. Brain Res 54:347–354

    Article  PubMed  CAS  Google Scholar 

  • Tigges J, Tigges M (1981) Distribution of retionfugal and corticofugal axon terminals in the superior colliculus of squirrel monkey. Invest Ophthalmol Vis Sci 20:149–158

    PubMed  CAS  Google Scholar 

  • Tomalski P, Johnson MH, Csibra G (2009) Temporal-nasal asymmetry of rapid orienting to face-like stimuli. NeuroReport 20(15):1309–1312. doi:10.1097/WNR.0b013e32832f0acd

    Article  PubMed  Google Scholar 

  • Vergilino-Perez D, Fayel A, Lemoine C et al (2012) Are there any left-right asymmetries in saccade parameters? Examination of latency, gain, and peak velocity. Invest Ophthalmol Vis Sci 53:3340–3348

    Article  PubMed  Google Scholar 

  • Walker R, Mannan S, Maurer D et al (2000) The oculomotor distractor effect in normal and hemianopic vision. Pro R Soc London B Biol Sci 267:431–438

    Article  CAS  Google Scholar 

  • White BJ, Munoz DP (2011) The superior colliculus. In: Liversedge L, Gilchrist ID, Everling S (eds) Oxford handbook of eye movements. Oxford University Press, Oxford, pp 195–214

    Google Scholar 

  • Williams C, Azzopardi P, Cowey A (1995) Nasal and temporal retinal ganglion cells projecting to the midbrain: implications for “blindsight”. Neurosci 65:577–586

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ómar I. Jóhannesson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jóhannesson, Ó.I., Kristjánsson, Á. Violating the main sequence: asymmetries in saccadic peak velocities for saccades into the temporal versus nasal hemifields. Exp Brain Res 227, 101–110 (2013). https://doi.org/10.1007/s00221-013-3490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3490-8

Keywords

Navigation