Skip to main content
Log in

Tetrodotoxin-resistant fibres and spinal Fos expression: differences between input from muscle and skin

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Nociceptive information from muscle and skin is differently processed at many levels of the central nervous system. In most articles on this issue, noxious stimuli were used that also excited non-nociceptive receptors. The effects of a pure nociceptive input from muscle or skin on spinal neurones are largely unknown. The aim of the study was to find out whether the Fos-protein expression in dorsal horn neurones induced by an exclusively nociceptive muscle input differs from that of the skin. Fos-proteins are transcription factors that regulate neuronal gene expression and induce neuroplastic effects that are involved in the development of chronic pain. A pure nociceptive input was achieved by tetrodotoxin (TTX) that is known to block all TTX-sensitive afferents and leave the TTX-resistant (TTX-r), presumably nociceptive, afferent fibres intact. We studied the c-Fos and FosB expression in the spinal cord following electrical stimulation of TTX-r afferent fibres in the gastrocnemius-soleus nerve (muscle) and compared it to the sural nerve (skin). In the spinal dorsal horn, the main effect of a TTX-r input from muscle was an increase in FosB (P < 0.05), but not in c-Fos expression (P = 0.51). In contrast, an input from the skin induced both FosB (P < 0.01) and c-Fos expression (P < 0.05). The data indicate that in the spinal, dorsal horn nociceptive input from skin and muscle has different effects on the Fos expression. The only effect of muscle input was an increase in FosB expression while skin input increased both c-Fos and FosB expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    Article  PubMed  CAS  Google Scholar 

  • Baron R, Jänig W, Kollmann W (1988) Sympathetic and afferent somata projecting in hindlimb nerves and the anatomical organization of the lumbar sympathetic nervous system of the rat. J Comp Neurol 275:460–468

    Article  PubMed  CAS  Google Scholar 

  • Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22:10277–10290

    PubMed  CAS  Google Scholar 

  • Buchanan S, Harper AA, Elliott JR (1996) Differential effects of tetrodotoxin (TTX) and high external K+ on A and C fibre compound action potential peaks in frog sciatic nerve. Neurosci Lett 219:131–134

    Article  PubMed  CAS  Google Scholar 

  • Bullitt E (1989) Induction of C-fos-like protein within the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 493:391–397

    Article  PubMed  CAS  Google Scholar 

  • Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296:517–530

    Article  PubMed  CAS  Google Scholar 

  • Carter DA, Lisney SJW (1987) The number of unmyelinated and myelinated axons in normal and regenerated rat saphenous nerves. J Neurol Sci 80:163–171

    Article  PubMed  CAS  Google Scholar 

  • Cervero F, Schaible HG, Schmidt RF (1991) Tonic descending inhibition of spinal cord neurones driven by joint afferents in normal cats and in cats with an inflamed knee joint. Exp Brain Res 83:675–678

    Article  PubMed  CAS  Google Scholar 

  • Clarke RW, Brown-Reid K, Kasher P, Harris J (2003) Tetrodotoxin block of A-fibre conduction and its effect on reflex responses evoked by electrical stimulation of the sural nerve in the decerebrated rabbit. Exp Physiol 88:13–18

    Article  PubMed  CAS  Google Scholar 

  • Clement CL, Keay KA, Podzebenko K, Gordon BD, Bandler R (2000) Spinal sources of noxious visceral and noxious deep somatic afferent drive onto the ventrolateral periaqueductal gray of the rat. J Comp Neurol 425:323–344

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall RE (2005) Fos, nociception and the dorsal horn. Prog Neurobiol 77:299–352

    PubMed  CAS  Google Scholar 

  • Coggeshall RE, Simon T, Carlton SM (2004) Differential expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 in normal and inflamed rats. Neurosci Lett 355:45–48

    Article  PubMed  CAS  Google Scholar 

  • Fang X, Djouhri L, Black J, Dib-Hajj SD, Waxman SG, Lawson SN (2002) The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci 22:7425–7433

    PubMed  CAS  Google Scholar 

  • Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Rev 28:370–490

    Article  PubMed  CAS  Google Scholar 

  • Herdegen T, Kovary K, Leah J, Bravo R (1991) Specific temporal and spatial distribution of JUN, FOS, and KROX-24 proteins in spinal neurons following noxious transsynaptic stimulation. J Comp Neurol 313:178–191

    Article  PubMed  CAS  Google Scholar 

  • Hiroi N, Marek GJ, Brown JR, Ye H, Saudou F, Vaidya VA, Duman RS, Greenberg M, Nestler EJ (1998) Essential role of the fosB gene in molecular, cellular, and behavioral actions of chronic electroconvulsive seizures. J Neurosci 18:6952–6962

    PubMed  CAS  Google Scholar 

  • Hoheisel U, Unger T, Mense S (2007) Sensitization of rat dorsal horn neurons by NGF-induced subthreshold potentials and low-frequency activation. A study employing intracellular recordings in vivo. Brain Res 1169:34–43

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Kiritoshi T, Murase K (2009) Synaptic plasticity in the spinal dorsal horn. Neurosci Res 64:133–136

    Article  PubMed  Google Scholar 

  • Jung K, Larsen LE, Rottmann S, Ellrich J (2011) Heterotopic low-frequency stimulation induces nociceptive LTD within the same central receptive field in man. Exp Brain Res 212:189–198

    Article  PubMed  Google Scholar 

  • Kelz MB, Nestler EJ (2000) DFosB: a molecular switch underlying long-term neural plasticity. Curr Opin Neurol 13:715–720

    Article  PubMed  CAS  Google Scholar 

  • Kerr BJ, Souslova V, McMahon SB, Wood JN (2001) A role for the TTX-resistant sodium channel NaV 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. NeuroReport 12:3077–3080

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Kontani H (2008) Separate recording of A-delta and C fiber-mediated nociceptive flexor reflex responses of mouse hindlimb using electromyography and the characteristics of wind-up appearing in the responses. J Pharmacol Sci 108:172–178

    Article  PubMed  CAS  Google Scholar 

  • Komagata S, Chen S, Hishida R, Shibata M, Shibuki K (2009) Neuropathic pain is triggered by disruption of GDNF-induced firing at very low frequencies in peripheral sensory nerves. Neurosci Res 65:S212–S212

    Article  Google Scholar 

  • Lambertz D, Hoheisel U, Mense S (2008) Influence of a chronic myositis on rat spinal field potentials evoked by TTX-resistant unmyelinated skin and muscle afferents. Eur J Pain 12:686–695

    Article  PubMed  CAS  Google Scholar 

  • Larson EB, Akkentli F, Edwards S, Graham DL, Simmons DL, Alibhai IN, Nestler EJ, Self DW (2010) Striatal regulation of ΔFosB, FosB, and cFos during cocaine self-administration and withdrawal. J Neurochem 115:112–122

    Article  PubMed  CAS  Google Scholar 

  • Ling J, Honda T, Shimada Y, Ozaki N, Shiraishi Y, Sugiura Y (2003) Central projection of unmyelinated (C) primary afferent fibres from gastrocnemius muscle in the guinea pig. J Comp Neurol 461:140–150

    Article  PubMed  Google Scholar 

  • Luis-Delgado OE, Barrot M, Rodeau JL, Ulery PG, Freund-Mercier MJ, Lasbennes F (2006) The transcription factor delta-FosB is recruited by inflammatory pain. J Neurochem 98:1423–1431

    Article  PubMed  CAS  Google Scholar 

  • McClung CA, Ulery PG, Perrotti LI, Zachariou V, Berton O, Nestler EJ (2004) DFosB: a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res 132:146–154

    Article  PubMed  CAS  Google Scholar 

  • Molander M, Xu Q, Grant G (1984) The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 230:133–141

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Barrot M, Self DW (2001) DFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci USA 98:11042–11046

    Article  PubMed  CAS  Google Scholar 

  • Ohtori S, Takahashi K, Chiba T, Takahashi Y, Yamagata M, Sameda H, Moriya H (2000) Fos expression in the rat brain and spinal cord evoked by noxious stimulation to low back muscle and skin. Spine 25:2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Panfil C, Makowska A, Ellrich J (2006) Brainstem and cervical spinal cord Fos immunoreactivity evoked by nerve growth factor injection into neck muscles in mice. Cephalalgia 26:128–135

    Article  PubMed  CAS  Google Scholar 

  • Panneton WM, Gan Q, Juric R (2005) The central termination of sensory fibres from nerves to the gastrocnemius muscle of the rat. Neuroscience 134:175–187

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Cadahía B, Drobic B, Davie JR (2011) Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 89:61–73

    Article  PubMed  Google Scholar 

  • Peyronnard JM, Charron LF, Lavoie J, Messier JP (1986) Motor, sympathetic and sensory innervation of rat skeletal muscle. Brain Res 373:268–302

    Article  Google Scholar 

  • Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Ritter AM, Liberator P, Iyer LM, Kash SF, Kohler MG, Kaczorowski GJ, MacIntyre DE, Martin WJ (2005) Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci USA 102:9382–9387

    Article  PubMed  CAS  Google Scholar 

  • Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86:629–640

    PubMed  CAS  Google Scholar 

  • Schmelz M (2009) Translating nociceptive processing into human pain models. Exp Brain Res 196:173–178

    Article  PubMed  CAS  Google Scholar 

  • Schomburg ED, Dibaj P, Steffens H (2010) Differentiation between Aδ and c fibre evoked nociceptive reflexes by TTX resistance and opioid sensitivity in the cat. Neurosci Res 69:241–245

    Article  PubMed  Google Scholar 

  • Silos-Santiago I (2008) The role of tetrodotoxin-resistant sodium channels in pain states: are they the next target for analgesic drugs? Curr Opin Investig Drugs 9:83–89

    PubMed  CAS  Google Scholar 

  • Steffens H, Hoheisel U, Eek B, Mense S (2001) Tetrodotoxin-resistant conductivity and spinal effects of cutaneous C-fibre afferents in the rat. Neurosci Res 39:413–419

    Article  PubMed  CAS  Google Scholar 

  • Steffens H, Eek B, Trudrung P, Mense S (2003) Tetrodotoxin block of A-fibre afferents from skin and muscle—a tool to study pure C-fibre effects in the spinal cord. Pflugers Arch 445:607–613

    PubMed  CAS  Google Scholar 

  • Sugiyo S, Uehashi D, Satoh F, Abe T, Yonehara N, Kobayashi M, Takemura M (2009) Effects of systemic bicuculline or morphine on formalin-evoked pain-related behaviour and c-Fos expression in trigeminal nuclei after formalin injection into the lip or tongue in rats. Exp Brain Res 196:229–237

    Article  PubMed  CAS  Google Scholar 

  • Swett JE, Torigoe Y, Elie VR, Bourassa CM, Miller PG (1991) Sensory neurons of the rat sciatic nerve. Exp Neurol 114:82–103

    Article  PubMed  CAS  Google Scholar 

  • Vanegas H, Schaible HG (2004) Descending control of persistent pain: inhibitory or facilitatory? Brain Res 46:295–309

    Article  Google Scholar 

  • Willcockson HH, Taylor-Blake B, Light AR (1995) Induction of fos-like immunoreactivity by electrocutaneous stimulation of the rat hindpaw. Somatosens Mot Res 12:151–161

    Article  PubMed  CAS  Google Scholar 

  • Wood JN, Boorman JP, Okuse K, Baker MD (2004) Voltage-gated sodium channels and pain pathways. J Neurobiol 61:55–71

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447:855–858

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the excellent technical support by B. Quenzer, M. Schmitt and E. Seel. This work was supported by the German Research Association, research group ‘Neuronal Plasticity and Learning in the transition from acute to chronic pain’ (DFG; Grant: KFG 107). The project is part of the research Consortium LOGIN (Localized and Generalized Muskuloskeletal Pain: Psychobiological Mechanisms and Implications for Treatment) funded by the German Federal Ministry of Education and Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Tesarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesarz, J., Hoheisel, U. & Mense, S. Tetrodotoxin-resistant fibres and spinal Fos expression: differences between input from muscle and skin. Exp Brain Res 224, 571–580 (2013). https://doi.org/10.1007/s00221-012-3337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3337-8

Keywords

Navigation