Skip to main content
Log in

A target sample of adolescents and reward processing: same neural and behavioral correlates engaged in common paradigms?

Experimental Brain Research Aims and scope Submit manuscript

Abstract

Adolescence is a transition period that is assumed to be characterized by increased sensitivity to reward. While there is growing research on reward processing in adolescents, investigations into the engagement of brain regions under different reward-related conditions in one sample of healthy adolescents, especially in a target age group, are missing. We aimed to identify brain regions preferentially activated in a reaction time task (monetary incentive delay (MID) task) and a simple guessing task (SGT) in a sample of 14-year-old adolescents (N = 54) using two commonly used reward paradigms. Functional magnetic resonance imaging was employed during the MID with big versus small versus no win conditions and the SGT with big versus small win and big versus small loss conditions. Analyses focused on changes in blood oxygen level–dependent contrasts during reward and punishment processing in anticipation and feedback phases. We found clear magnitude-sensitive response in reward-related brain regions such as the ventral striatum during anticipation in the MID task, but not in the SGT. This was also true for reaction times. The feedback phase showed clear reward-related, but magnitude-independent, response patterns, for example in the anterior cingulate cortex, in both tasks. Our findings highlight neural and behavioral response patterns engaged in two different reward paradigms in one sample of 14-year-old healthy adolescents and might be important for reference in future studies investigating reward and punishment processing in a target age group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balleine B, Killcross S (1994) Effects of ibotenic acid lesions of the nucleus accumbens on instrumental action. Behav Brain Res 65:181–193

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol 9:65–73

    Article  PubMed  CAS  Google Scholar 

  • Bjork JM, Knutson B, Fong GW, Caggiano DM, Bennett SM, Hommer DW (2004) Incentive-elicited brain activation in adolescents: similarities and differences from young adults. J Neurosci 24:1793–1802

    Article  PubMed  CAS  Google Scholar 

  • Bjork JM, Knutson B, Hommer DW (2008) Incentive-elicited striatal activation in adolescent children of alcoholics. Addiction 103(8):1308–1319

    Article  PubMed  Google Scholar 

  • Bjork JM, Smith AR, Chen G, Hommer DW (2010) Adolescents, adults and rewards: comparing motivational neurocircuitry recruitment using fMRI. PLoS One 5:e11440

    Article  PubMed  Google Scholar 

  • Brown SA, Tapert SF, Granholm E, Delis DC (2000) Neurocognitive functioning of adolescents: effects of protracted alcohol use. Alcohol Clin Exp Res 24(2):164–171

    Article  PubMed  CAS  Google Scholar 

  • Carter RM, Macinnes JJ, Huettel SA, Adcock RA (2009) Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Front Behav Neurosci 3:21

    Article  PubMed  Google Scholar 

  • Corbit LH, Muir JL, Balleine BW (2001) The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J Neurosci 21:3251–3260

    PubMed  CAS  Google Scholar 

  • Crews F, He J, Hodge C (2007) Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 86:189–199

    Article  PubMed  CAS  Google Scholar 

  • Dahl RE (2004) Adolescent brain development: a period of vulnerabilities and opportunities.Keynote address. Ann NY Acad Sci 1021:1–22

    Article  PubMed  Google Scholar 

  • Delgado MR, Locke HM, Stenger VA, Fiez JA (2003) Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cogn Affect Behav Neurosci 3:27–38

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, Nelson EE, McClure EB, Monk CS, Munson S, Eshel N, Zarahn E, Leibenluft E, Zametkin A, Towbin K, Blair J, Charney D, Pine DS (2004) Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42:1585–1597

    Article  PubMed  Google Scholar 

  • Ernst M, Nelson EE, Jazbec S, McClure EB, Monk CS et al (2005) Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. Neuroimage 25:1279–1291

    Article  PubMed  Google Scholar 

  • Galvan A, Hare TA, Parra CE, Penn J, Voss H et al (2006) Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 26:6885–6892

    Article  PubMed  CAS  Google Scholar 

  • Goodman R, Ford T, Richards H, Gatward R, Meltzer H (2000) The development and well-being assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry 41:645–655

    Article  PubMed  CAS  Google Scholar 

  • Kirsch P, Schienle A, Stark R, Sammer G, Blecker C, Walter B, Ott U, Burkart J, Vaitl D (2003) Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. NeuroImage 20:1086–1095

    Article  PubMed  Google Scholar 

  • Knutson B, Greer SM (2008) Anticipatory affect: neural correlates and consequences for choice. Phil Trans B R Soc B 363:3771–3786

    Article  Google Scholar 

  • Knutson B, Westdorp A, Kaiser E, Hommer D (2000) FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage 12:20–27

    Article  PubMed  CAS  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001a) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neuroscience 21:RC159

    CAS  Google Scholar 

  • Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001b) Dissociation of reward anticipation and outcome with event-related fMRI. NeuroReport 12:3683–3687

    Article  PubMed  CAS  Google Scholar 

  • Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Büchel C, Conrod PJ, Dalley JW, Flor H, Gallinat J, Garavan H, Heinz A, Itterman B, Lathrop M, Mallik C, Mann K, Martinot J-L, Paus T, Poline J-B, Robbins TW, Rietschel M, Reed L, Smolka M, Spanagel R, Speiser C, Stephens DN, Ströhle A, Struve M, The IMAGEN consortium (2010) The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry 15:1128–1139

    Article  PubMed  CAS  Google Scholar 

  • Steinberg L (2009) A behavioral scientist looks at the science of adolescent brain development. Brain Cogn 72:160–164

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289

    Article  PubMed  CAS  Google Scholar 

  • Van Leijenhorst L, Moor BG, Op de Macks ZA, Rombouts SA, Westenberg PM, Crone EA (2010) Adolescent risky decision-making: neurocognitive development of reward and control regions. Neuroimage 51:345–355

    Article  PubMed  Google Scholar 

  • Yacubian J, Gläscher J, Schroeder K, Sommer T, Braus DF, Büchel C (2006) Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J Neurosci 26:9530–9537

    Article  PubMed  CAS  Google Scholar 

  • Yacubian J, Sommer T, Schroeder K, Gläscher J, Braus DF, Büchel C (2007) Subregions of the ventral striatum show preferential coding of reward magnitude and probability. NeuroImage 38:557–563

    Article  PubMed  Google Scholar 

  • Zink CF, Pagnoni G, Martin-Skurski ME, Chappelow JC, Berns GS (2004) Human striatal responses to monetary reward depend on saliency. Neuron 42:509–517

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support of this study was provided by the IMAGEN project, which receives research funding from the European Community’s Sixth Framework Program (LSHM-CT-2007-037286) and coordinated project ADAMS (242257) as well as the UK-NIHR-Biomedical Research Centre Mental Health, the MRC-Addiction Research Cluster “Genomic Biomarkers”, and the MRC program grant “Developmental pathways into adolescent substance abuse” (93558). This research was also supported by the German Ministry of Education and Research (BMBF grant # 01EV0711). This manuscript reflects only the author’s views and the Community is not liable for any use that may be made of the information contained therein. TB served in an advisory or consultancy role for Bristol-Myers Sqibb, Develco Pharma, Lilly, Medice, Novartis, Shire and Viforpharma. He received conference attendance support and conference support or received speaker’s fee by Lilly, Janssen McNeil, Medice, Novartis, Shire, UCB. He is/has been involved in clinical trials conducted by Lilly, Shire and Novartis. The present work is unrelated to the above grants and relationships. AH has received research funding from the German Research Foundation and the Bernstein Center for Computational Neuroscience Berlin (German Federal Ministry of Education and Research), Eli Lilly & Company, Janssen-Cilag and Bristol-Myers Squibb. AH has received Speaker Honoraria from Janssen-Cilag, Johnson & Johnson, Lilly, Pfizer and Servier.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Frauke Nees.

Additional information

Frauke Nees and Sabine Vollstädt-Klein shared first authorship.

Members of the IMAGEN consortium are listed in the Appendix.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file 1 (PDF 4 kb)

Additional file 2 (PDF 16 kb)

Appendix

Appendix

IMAGEN Consortium

King’s College, Institute of Psychiatry, London, UK

G. Schumann

P. Conrod

L. Reed

G. Barker

S. Williams

E. Loth

M. Struve

A. Lourdusamy

S. Costafreda

A. Cattrell

C. Nymberg

L. Topper

L. Smith

S. Havatzias

K. Stueber

C. Mallik

T.-K. Clarke

D. Stacey

C. Peng Wong

H. Werts

S. Williams

C. Andrew

S. Desrivieres

S. Zewdie (Coordination office)

Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité–Universitätsmedizin Berlin, Berlin, Germany

A. Heinz

J. Gallinat

I. Häke

N. Ivanov

A. Klär

J. Reuter

C. Palafox

C. Hohmann

C. Schilling

K. Lüdemann

A. Romanowski

A. Ströhle

E. Wolff

M. Rapp

Physikalisch-Technische Bundesanstalt, Berlin, Germany

B. Ittermann

R. Brühl

A. Ihlenfeld

B. Walaszek

F. Schubert

Institute of Neuroscience, Trinity College, Dublin, Ireland

H. Garavan

C. Connolly

J. Jones

E. Lalor

E. McCabe

A. Ní Shiothcháin

R. Whelan

Department of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

R. Spanagel,

F. Leonardi-Essmann,

W. Sommer

Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

H. Flor

F. Nees

Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

T. Banaschewski

L. Poustka

S. Steiner

Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

K. Mann

M. Buehler

S. Vollstaedt-Klein

Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

M. Rietschel

E. Stolzenburg

C. Schmal

F. Schirmbeck

Brain and Body Centre, University of Nottingham, Nottingham, UK

T. Paus

P. Gowland

N. Heym

C. Lawrence

C. Newman

Z. Pausova

Technische Universitaet Dresden, Dresden, Germany

M. Smolka

T. Huebner

S. Ripke

E. Mennigen

K. Muller

V. Ziesch

Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

C. Büchel

U. Bromberg

T. Fadai

L. Lueken

J. Yacubian

J. Finsterbusch

Institut National de la Sante´ et de la Recherche Médicale, Service Hospitalier Frédéric Joliot, Orsay, France

J.-L. Martinot

E. Artiges

N. Bordas

S. de Bournonville

Z. Bricaud

F. Gollier Briand

H. Lemaitre

J. Massicotte

R. Miranda

M.-L. Paillere Martinot

J. Penttilä

Neurospin, Commissariat à l0Energie Atomique, Paris, France

J.-B. Poline

A. Barbot

Y. Schwartz

C. Lalanne

V. Frouin

B. Thyreau

Department of Experimental Psychology, Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, UK

J. Dalley

A. Mar

T. Robbins

N. Subramaniam

D. Theobald

N. Richmond

M. de Rover

A. Molander

E. Jordan

E. Robinson

L. Hipolata

M. Moreno

M. Arroyo

University of Sussex, Brighton, UK

D. Stephens

T. Ripley

H. Crombag

Y. Pena

Centre National de Genotypage, Evry, France (CNG)

M. Lathrop

D. Zelenika

S. Heath

German Centre for Ethics in Medicine, Bonn (DZEM), Germany

D. Lanzerath

B. Heinrichs

T. Spranger

Gesellschaft fuer Ablauforganisation m.b.H. (Munich) (GABO), Germany

B. Fuchs

C. Speiser

Klinik für Kinder- und Jugendpsychiatrie, Zentrum für Psychosoziale Medizin, Universitätsklinikum Heidelberg, Germany

F. Resch

J. Haffner

P. Parzer

R. Brunner

Scito, Paris, France

A. Klaassen

I. Klaassen

PERTIMM, Asnières-Sur-Seine, France

P. Constant

X. Mignon

NordicNeuroLabs, Bergen, Norway

T. Thomsen

S. Zysset

A. Vestboe

Delosis Ltd, London, UK

J. Ireland

J. Rogers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nees, F., Vollstädt-Klein, S., Fauth-Bühler, M. et al. A target sample of adolescents and reward processing: same neural and behavioral correlates engaged in common paradigms?. Exp Brain Res 223, 429–439 (2012). https://doi.org/10.1007/s00221-012-3272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3272-8

Keywords

Navigation