Skip to main content
Log in

Effects of the model’s handedness and observer’s viewpoint on observational learning

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Observation promotes motor skill learning. However, little is known about the type of model and conditions of observation that can optimize learning. In this study, we investigated the effects of the model’s handedness and the observer’s viewpoint on the learning of a complex spatiotemporal task. Four groups of right-handed participants observed, from either a first- or third-person viewpoint, right- or left-handed models performing the task. Observation resulted in significant learning. More importantly, observation of same-handed models resulted in improved learning as compared with observation of opposite-handed models, regardless of the observer’s viewpoint. This suggests that the action observation network (AON) is more sensitive to the model’s handedness than to the observer’s viewpoint. Our results are consistent with recent studies that suggest that the AON is linked to or involves sensorimotor regions of the brain that simulate motor programming as if the observed movement was performed with one’s own dominant hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It should be noted that our study differs from previous work addressing the question of whether observational learning is effector dependent or independent (Boutin, Fries, Panzer, Blandin & Shea, 2010; Gruetzmacher, Panzer, Blandin, & Shea, 2011, Osman, Bird, & Heyes, 2005). In the present study, we want to determine whether a right-handed observer performing the task with his or her right hand (which is usually the case in most real-life situations, such as learning how to bowl, play golf, and tennis) can learn better from a right-handed or left-handed model depending on the observer’s perspective and not whether this learning can be transferred so that the observers can perform the task with both right and left hands.

  2. It could be argued that because participants in the L-1st and L-3rd groups observed a left-handed model but performed the task using their right hand, a more appropriate label for these tests would be “transfer” rather than “retention”. However, because a transfer test evaluates the performance of the participants at a task that was different from what they specifically wanted to learn, we opted to use the “retention” label.

References

  • Alaerts K, Heremans E, Swinnen SP, Wenderoth N (2009) How are observed actions mapped to the observer’s motor system? Influence of posture and perspective. Neuropsychologia 47:415–422. doi:10.1016/j.neuropsychologia.2008.09.012

    Article  PubMed  Google Scholar 

  • Avikainen S, Kulomaki T, Hari R (1999) Normal movement reading in Asperger subjects. Neuroreport 10:3467–3470

    Article  PubMed  CAS  Google Scholar 

  • Aziz-Zadeh L, Maeda F, Zaidel E, Mazziotta J, Iacoboni M (2002) Lateralization in motor facilitation during action observation: a TMS study. Exp Brain Res 144:127–131

    Article  PubMed  Google Scholar 

  • Aziz-Zadeh L, Koski L, Zaidel E, Mazziotta J, Iacoboni M (2006) Lateralization of the human mirror neuron system. J Neurosci 26:2964–2970. doi:10.1523/jneurosci.2921-05.2006

    Article  PubMed  CAS  Google Scholar 

  • Blandin Y, Proteau L, Alain C (1994) On the cognitive processes underlying contextual interference and observational learning. J Mot Behav 26:18–26

    Article  PubMed  CAS  Google Scholar 

  • Blandin Y, Lhuisset L, Proteau L (1999) Cognitive processes underlying observational learning of motor skills. Q J Exp Psychol 52A:957–979

    Article  Google Scholar 

  • Boutin A, Fries U, Panzer S, Shea CH, Blandin Y (2010) Role of action observation and action in sequence learning and coding. Acta Psychol 135:240–251. doi:10.1016/j.actpsy.2010.07.005

    Article  Google Scholar 

  • Brown LE, Wilson ET, Gribble PL (2009) Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing. J Cogn Neurosci 21:1013–1022

    Article  PubMed  Google Scholar 

  • Buccino G, Binkofski F, Fink GR et al (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404

    PubMed  CAS  Google Scholar 

  • Cardinal RN, Aitken MRF (2006) ANOVA for the behavioural sciences researcher. Lawrence Erlbaum Associates, New Jersey

    Google Scholar 

  • Carroll WR, Bandura A (1982) The role of visual monitoring in observational learning of action patterns: making the unobservable observable. J Mot Behav 14:153–167

    PubMed  CAS  Google Scholar 

  • Chiavarino C, Apperly IA, Humphreys GW (2007) Exploring the functional and anatomical bases of mirror-image and anatomical imitation: the role of the frontal lobes. Neuropsychologia 45:784–795. doi:10.1016/j.neuropsychologia.2006.08.007

    Article  PubMed  Google Scholar 

  • Cisek P, Kalaska JF (2004) Neural correlates of mental rehearsal in dorsal premotor cortex. Nature 431:993–996. doi:10.1038/nature03005

    Article  PubMed  CAS  Google Scholar 

  • Collier GL, Wright CE (1995) Temporal rescaling of simple and complex ratios in rhythmic tapping. J Exp Psychol Human 21:602–627. doi:10.1037/0096-1523.21.3.602

    Article  CAS  Google Scholar 

  • Coren S, Halpern DF (1991) Left-handedness: a marker for decreased survival fitness. Psychol Bull 109:90–106. doi:10.1037/0033-2909.109.1.90

    Article  PubMed  CAS  Google Scholar 

  • Cross ES, Kraemer DJM, Hamilton AFD, Kelley WM, Grafton ST (2009) Sensitivity of the action observation network to physical and observational learning. Cereb Cortex 19:315–326. doi:10.1093/cercor/bhn083

    Article  PubMed  Google Scholar 

  • Dushanova J, Donoghue J (2010) Neurons in primary motor cortex engaged during action observation. Eur J Neurosci 31:386–398. doi:10.1111/j.1460-9568.2009.07067.x

    Article  PubMed  Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667. doi:10.1126/science.1106138

    Article  PubMed  CAS  Google Scholar 

  • Frey SH, Gerry VE (2006) Modulation of neural activity during observational learning of actions and their sequential orders. J Neurosci 26:13194–13201. doi:10.1523/jneurosci.3914-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Gallese V, Fogassi L, Fadiga L, Rizzolatti G (2002) Action representation and the inferior parietal lobule. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance. Oxford University Press, Oxford, pp 247–266

    Google Scholar 

  • Grafton ST, Fadiga L, Arbib MA, Rizzolatti G (1997) Premotor cortex activation during observation and naming of familiar tools. Neuroimage 6:231–236

    Article  PubMed  CAS  Google Scholar 

  • Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24:95–112

    Article  Google Scholar 

  • Gruetzmacher N, Panzer S, Blandin Y, Shea CH (2011) Observation and physical practice: coding of simple motor sequences. Q J Exp Psychol iFirst. doi:10.1080/17470218.2010.543286

  • Hayes SJ, Elliott D, Bennett SJ (2010) General motor representations are developed during action-observation. Exp Brain Res 204:199–206. doi:10.1007/s00221-010-2303-6

    Article  PubMed  Google Scholar 

  • Hesse MD, Sparing R, Fink GR (2009) End or means—the “What” and “How” of observed intentional actions. J Cogn Neurosci 21:776–790

    Article  PubMed  Google Scholar 

  • Heyes CM, Foster CL (2002) Motor learning by observation: evidence from serial reaction time task. Q J Exp Psychol A 55(2):593–607

    Article  PubMed  CAS  Google Scholar 

  • Iacoboni M, Koski LM, Brass M et al (2001) Reafferent copies of imitated actions in the right superior temporal cortex. P Natl Acad Sci USA 98:13995–13999

    Article  CAS  Google Scholar 

  • Ida Y, Mandal MK (2003) Cultural difference in side bias: evidence from Japan and India. Laterality 8:121–133. doi:10.1080/13576500244000157

    Article  Google Scholar 

  • Ishikura T, Inomata K (1995) Effects of angle of model-demonstration on learning of motor skill. Percept Mot Skill 80:651–658

    Article  CAS  Google Scholar 

  • Kilner JM, Friston KJ, Frith CD (2007a) The mirror-neuron system: a Baynesian perspective. Neuroreport 18:619–623

    Article  PubMed  Google Scholar 

  • Kilner JM, Friston KJ, Frith CD (2007b) Predictive coding: an account of the mirror neuron system. Cogn Process 8:159–166

    Article  PubMed  Google Scholar 

  • Kilner JM, Marchant JL, Frith CD (2009) Relationship between activity in human primary motor cortex during action observation and the mirror neuron system. Plos One 4. doi:e492510.1371/journal.pone.0004925

  • Maeda F, Kleiner-Fisman G, Pascual-Leone A (2002) Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. J Neurophysiol 87:1329–1335

    PubMed  Google Scholar 

  • McCullagh P, Weiss MR (2001) Modeling: considerations for motor skill performance and psychological responses. In: Singer RM, Hausenblaus JA, Janelle CM (eds) Handbook of sport psychology (2nd edn) Wiley, New York, pp 205–238

  • Miall RC (2003) Connecting mirror neurons and forward models. NeuroReport 14:2135–2137

    Article  PubMed  CAS  Google Scholar 

  • Michel GF, Harkins DA (1985) Concordance of handedeness between teacher and student facilitates learning manual skills. J Hum Evol 14:597–601

    Article  Google Scholar 

  • Neal A, Kilner JM (2010) What is simulated in the action observation network when we observe actions? Eur J Neurosci 32:1765–1770. doi:10.1111/j.1460-9568.2010.07435.x

    Article  PubMed  Google Scholar 

  • Newell KM (1981) Skill learning. In: Holding DH (ed) Human skills. Wiley, New York, pp 203–225

    Google Scholar 

  • Osman M, Bird G, Heyes C (2005) Action observation supports effector-dependent learning of finger movement sequences. Exp Brain Res 165:19–27

    Article  PubMed  Google Scholar 

  • Pilgramm S, Lorey B, Stark R, Munzert J, Vaitl D, Zentgraf K (2010) Differential activation of the lateral premotor cortex during action observation. BMC Neurosci 11:89. doi:10.1186/1471-2202-11-89

    Article  PubMed  Google Scholar 

  • Pollock BJ, Lee TD (1992) Effects of the model’s skill level on observational motor learning. Res Q Exerc Sport 63:25–29

    PubMed  CAS  Google Scholar 

  • Press C, Cook J, Blakemore SJ, Kilner J (2011) Dynamic modulation of human motor activity when observing actions. J Neurosci 31:2792–2800. doi:10.1523/jneurosci.1595-10.2011

    Article  PubMed  CAS  Google Scholar 

  • Rohbanfard H, Proteau L (2011) Learning through observation: a combination of expert and novice models favors learning. Submitted for publication

  • Sambrook TD (1998) Does visual perspective matter in imitation? Perception 27:1461–1473

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RA, Lee TD (2005) Motor control and learning: a behavioral emphasis. Human Kinetics, Champaign

    Google Scholar 

  • Scully DM, Newell KM (1985) Observational learning and the acquisition of motor skills: toward a visual perception perspective. J Hum Mov Stud 11:169–186

    Google Scholar 

  • Shea CH, Wright DL, Wulf G, Whitacre C (2000) Physical and observational practice afford unique learning opportunities. J Mot Behav 32:27–36

    Article  PubMed  CAS  Google Scholar 

  • Shmuelof L, Zohary E (2006) A mirror representation of others’ actions in the human anterior parietal cortex. J Neurosci 26:9736–9742. doi:10.1523/jneurosci.1836-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Shmuelof L, Zohary E (2008) Mirror-image representation of action in the anterior parietal cortex. Nat Neurosci 11:1267–1269. doi:10.1038/nn.2196

    Article  PubMed  CAS  Google Scholar 

  • Tabachnick BG, Fidell LS (2007) Using multivariate statistics. Allyn and Bacon, Boston

    Google Scholar 

  • Trempe M, Sabourin M, Rohbanfard H, Proteau L (2011) Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task. Exp Brain Res 209:181–192

    Article  PubMed  Google Scholar 

  • Wolpert DM, Doya K, Kaewato M (2003) A unifying computation framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358:593–602

    Article  PubMed  Google Scholar 

  • Wulf G, Mornell A (2008) Insights about practice from the perspective of motor learning: a review. Music Perform Res 2:1–25

    Google Scholar 

  • Wulf G, Shea C, Lewthwaite R (2010) Motor skill learning and performance: a review of influential factors. Med Educ 44:75–84. doi:10.1111/j.1365-2923.2009.03421.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Discovery grant (L.P.) provided by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Proteau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohbanfard, H., Proteau, L. Effects of the model’s handedness and observer’s viewpoint on observational learning. Exp Brain Res 214, 567–576 (2011). https://doi.org/10.1007/s00221-011-2856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2856-z

Keywords

Navigation