Skip to main content
Log in

The role of the right temporoparietal junction in intersensory conflict: detection or resolution?

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants’ hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Astafiev SV, Shulman GL, Corbetta M (2006) Visuospatial reorienting signals in the human temporo-parietal junction are independent of response selection. Eur J Neurosci 23:591–596

    Article  PubMed  Google Scholar 

  • Balslev D, Nielsen FA, Paulson OB, Law I (2005) Right temporoparietal cortex activation during visuo-proprioceptive conflict. Cereb Cortex 15:166–169

    Article  PubMed  Google Scholar 

  • Beilock SL, Carr TH, MacMahon C, Starkes JL (2002) When paying attention becomes counterproductive: impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. J Exp Psychol Appl 8:6–16

    Article  PubMed  Google Scholar 

  • Beilock SL, Bertenthal BI, McCoy AM, Carr TH (2004) Haste does not always make waste: expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills. Psychon Bull Rev 11:373–379

    PubMed  Google Scholar 

  • Benton AL (1959) Right-left discrimination and finger localization. Development and Pathology, Hoeber-Harper

    Google Scholar 

  • Bisiach E, Pizzamiglio L, Nico D, Antonucci G (1996) Beyond unilateral neglect. Brain 119:851–857

    Article  PubMed  Google Scholar 

  • Blanke O, Mohr C (2005) Out-of-body experience, heautoscopy, and autoscopic hallucination of neurological origin: implications for neurocognitive mechanisms of corporeal awareness and self consciousness. Brain Res Rev 50:184–199

    Article  PubMed  Google Scholar 

  • Blanke O, Landis T, Spinelli L, Seeck M (2004) Out-of-body experience and autoscopy of neurological origin. Brain 127:243–258

    Article  PubMed  Google Scholar 

  • Blanke O, Mohr C, Michel CM, Pascual-Leone A, Brugger P, Seeck M, Landis T, Thut T (2005) Linking out-of-body experience and the self processing to mental own-body imagery at the temporoparietal junction. J Neurosci 25:550–557

    Article  CAS  PubMed  Google Scholar 

  • Brugger P, Regard M, Landis T (1997) Illusory reduplication of one’s own body: phenomenology and classification of autoscopic phenomena. Cognit Neuropsychiatry 2:19–38

    Article  Google Scholar 

  • Chambers CD, Payne JM, Stokes MG, Mattingley JB (2004) Fast and slow parietal pathways mediate spatial attention. Nat Neurosci 7:217–218

    Article  CAS  PubMed  Google Scholar 

  • Collins JJ, Imhoff TT, Grigg P (1997) Noise-mediated enhancements and decrements in human tactile sensation. Phys Rev E 56:923–926

    Article  CAS  Google Scholar 

  • Committeri G, Pitzalis S, Galati G, Patria F, Pelle G, Sabatini U, Castriota-Scanderbeg A, Piccardi L, Guariglia C, Pizzamiglio L (2007) Neural bases of personal and extrapersonal neglect in humans. Brain 130:431–441

    Article  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:292–297

    Article  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Kincade JM, Shulman GL (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci 14:508–523

    Article  PubMed  Google Scholar 

  • Decety J, Lamm C (2007) The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neuroscientist 13:580–593

    Article  PubMed  Google Scholar 

  • Decety J, Sommerville JA (2003) Shared representations between self and other: a social cognitive neuroscience view. Trends Cogn Sci 7:527–533

    Article  PubMed  Google Scholar 

  • Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3:277–283

    Article  CAS  PubMed  Google Scholar 

  • Downar J, Crawley AP, Mikulis DJ, Davis K (2002) A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiol 87:615–620

    PubMed  Google Scholar 

  • Duncan RO, Boynton GM (2007) Tactile hyperacuity thresholds correlate with finger maps in primary somatosensory cortex (S1). Cereb Cortex 17:2878–2891

    Article  PubMed  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  CAS  PubMed  Google Scholar 

  • Ernst MM, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    Article  PubMed  Google Scholar 

  • Farrer C, Franck N, Frith CD, Decety J, Damato T, Jeannerod M (2004) Neural correlates of action attribution in schizofrenia. Psychiatry Res 131:31–44

    Article  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Halligan PW, Frith CD, Driver J, Frackowiak RSJ, Dolan RJ (1999) The neural consequences of conflict between intention and the senses. Brain 122:497–512

    Article  PubMed  Google Scholar 

  • Friedrich FJ, Egly R, Rafal RD (1998) Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. Neuropsychology 12:193–207

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg G (1999) Matching and imitation of hand and finger postures in patients with damage in the left or right hemisphere. Neuropsychologia 37:559–566

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg G, Münsinger U, Karnath HO (2009) Severity of neglect predicts accuracy of imitation in patients with right hemisphere lesions. Neuropsychologia 47:2948–2952

    Article  PubMed  Google Scholar 

  • Haggard P (2006) Just seeing you makes me feel better: interpersonal enhancement of touch. Soc Neurosci 1:104–110

    Article  PubMed  Google Scholar 

  • Harris CS (1965) Perceptual adaptation to inverted, reversed, and displaced vision. Psychol Rev 72:419–444

    Article  CAS  PubMed  Google Scholar 

  • Harris JA, Arabzadeh E, Moore CA, Clifford CWG (2007) Noninformative vision causes adaptive changes in tactile sensitivity. J Neurosci 27:7136–7140

    Article  CAS  PubMed  Google Scholar 

  • Holmes NP, Snijders HJ, Spence C (2006) Reaching with alien limbs: visual exposure to prosthetic hands in a mirror biases proprioception without accompanying illusions of ownership. Percept Psychophys 68:685–701

    PubMed  Google Scholar 

  • Jalinous R (1995) Guide to magnetic stimulation. The MagStim Company, Whitland

    Google Scholar 

  • Karnath HO, Ferber S, Himmelbach M (2001) Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411:950–953

    Article  CAS  PubMed  Google Scholar 

  • Kennett S, Taylor-Clarke M, Haggard P (2001) Noninformative vision improves the spatial resolution of touch in humans. Curr Biol 11:1188–1191

    Article  CAS  PubMed  Google Scholar 

  • Kinsbourne M, Warrington EK (1962) A study of finger agnosia. Brain 85:47–66

    Article  CAS  PubMed  Google Scholar 

  • Leube DT, Knoblich G, Erb M, Grodd W, Bartles M, Kircher TT (2003) The neural correlates of perceiving one’s own movements. NeuroImage 20:2084–2090

    Article  PubMed  Google Scholar 

  • Lewis JW, van Essen DC (2000) Corticocortical connections of visual sensorimotor and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112–137

    Article  CAS  PubMed  Google Scholar 

  • Lewis JW, Beauchamp M, DeYoe EA (2000) A comparison of visual and auditory motion processing in human cerebral cortex. Cereb Cortex 10:873–888

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Randerath J, Goldenberg G, Hermsdörfer J (2007) Grip forces isolated from knowledge about object properties following a left parietal lesion. Neurosci Lett 426:187–191

    Article  CAS  PubMed  Google Scholar 

  • Longo MR, Betti V, Aglioti SM, Haggard P (2009) Visually induced analgesia: seeing the body reduces pain. J Neurosci 29:12125–12130

    Article  CAS  PubMed  Google Scholar 

  • Maravita A, Spence C, Driver J (2003) Multisensory integration and the body schema: close to hand and within reach. Curr Biol 13:R531–R539

    Article  CAS  PubMed  Google Scholar 

  • Mayer E, Martory MD, Pegna AJ, Landis T, Delavelle J, Annoni JM (1999) A pure case of Gerstmann syndrome with a subangular lesion. Brain 122:1107–1120

    Article  PubMed  Google Scholar 

  • Meister IG, Wienemann M, Buelte D, Grünewald C, Sparing R, Dambeck N, Boroojerdi B (2006) Hemiextinction induced by transcranial magnetic stimulation over the right temporo-parietal junction. Neuroscience 142:119–123

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052

    Article  PubMed  Google Scholar 

  • Mesulam MM (1999) Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil Trans R Soc Lond B 354:1325–1346

    Article  CAS  Google Scholar 

  • Mort DJ, Malhotra P, Mannan SK, Rorden C, Pambakian A, Kennard C, Masud H (2003) The anatomy of visual neglect. Brain 126:1986–1997

    Article  PubMed  Google Scholar 

  • Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (2007) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120:515–533

    Article  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  Google Scholar 

  • Pavani F, Spence C, Driver J (2000) Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol Sci 11:353–359

    Article  CAS  PubMed  Google Scholar 

  • Perry RJ, Zeki S (2000) The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain 123:2273–2288

    Article  PubMed  Google Scholar 

  • Posner MI, Nissen MJ, Klein RM (1976) Visual dominance: an information-processing account of its origins and significance. Psychol Rev 83:157–171

    Article  CAS  PubMed  Google Scholar 

  • Press C, Taylor-Clarke M, Kennett S, Haggard P (2004) Visual enhancement of touch in spatial body representation. Exp Brain Res 154:238–245

    Article  PubMed  Google Scholar 

  • Ramachandran VS, Rogers-Ramachandran D (1996) Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci 263:377–386

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran VS, Rogers-Ramachandran D, Cobb S (1995) Touching the phantom limb. Nature 377:489–490

    Article  CAS  PubMed  Google Scholar 

  • Ro T, Wallace R, Hagedorn J, Farnè A, Pienkos E (2004) Visual enhancing of tactile perception in the posterior parietal cortex. J Cogn Neurosci 16:24–30

    Article  PubMed  Google Scholar 

  • Robertson EM, Théoret H, Pascual-Leone A (2003) Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 15:948–960

    Article  CAS  PubMed  Google Scholar 

  • Rock I, Victor J (1964) Vision and touch: an experimentally created conflict between the two senses. Science 143:594–596

    Article  CAS  PubMed  Google Scholar 

  • Schweizer R, Maier M, Braun C, Birbaumer N (2000) Distribution of mislocalizations of tactile stimuli on the fingers of the human hand. Somatosens Mot Res 17:309–316

    Article  CAS  PubMed  Google Scholar 

  • Shore DI, Gray K, Spry E, Spence C (2005) Spatial modulation of tactile temporal order judgments. Perception 34:1251–1262

    Article  PubMed  Google Scholar 

  • Shulman GL, Astafiev SV, McAvoy MP, d’Avossa G, Corbetta M (2007) Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. Cereb Cortex 17:2625–2633

    Article  PubMed  Google Scholar 

  • Spence C (2009) Explaining the Colavita visual dominance effect. Prog Brain Res 176:245–258

    PubMed  Google Scholar 

  • Spence SA, Brooks DJ, Hirsch SR, Liddle PF, Meehan J, Grasby PM (1997) A PET study of voluntary movement in schizophrenic patients experiencing passivity phenomena (delusion of alien control). Brain 120:1997–2011

    Article  PubMed  Google Scholar 

  • Spence C, Pavani F, Driver J (1998) What crossing the hands can reveal about visuotactile links in spatial attention. Abstr Psychon Soc 3:13

    Google Scholar 

  • Spence C, Baddeley R, Zampini M, James R, Shore DI (2003) Multisensory temporal order judgments: when two locations are better than one. Percept Psychophys 65:318–328

    PubMed  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Tsakiris M, Costantini M, Haggard P (2008) The role of the right temporoparietal junction in maintaining a coherent sense of one’s body. Neuropsychologia 46:3014–3018

    Article  PubMed  Google Scholar 

  • Vallar G (1998) Spatial hemineglect in humans. Trends Cogn Sci 2:87–97

    Article  Google Scholar 

  • Vallar G (2001) Extrapersonal visual unilateral spatial neglect and its neuroanatomy. NeuroImage 14:S52–S58

    Article  CAS  PubMed  Google Scholar 

  • Vega-Bermudez F, Johnson KO (2001) Differences in spatial acuity between digits. Neurology 22:1389–1391

    Google Scholar 

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108:1–16

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Knight RT (1991) Age effects on the P300 to novel somatosensory stimuli. Electroencephalogr Clin Neurophysiol 78:297–301

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Kitazawa S (2001) Reversal of subjective temporal order due to arm crossing. Nat Neurosci 4:759–765

    Article  CAS  PubMed  Google Scholar 

  • Zacks JM, Rypma B, Gabrieli JD, Tversky B, Glover GH (1999) Imagined transformations of bodies: an fMRI investigation. Neuropsychologia 37:1029–1040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a BBSRC project grant BB/D009529/1 and Leverhulme Trust Research Fellowship to PH. Additional funding was provided by a research grant from BIAL Foundation.

Author information

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuba Papeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papeo, L., Longo, M.R., Feurra, M. et al. The role of the right temporoparietal junction in intersensory conflict: detection or resolution?. Exp Brain Res 206, 129–139 (2010). https://doi.org/10.1007/s00221-010-2198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2198-2

Keywords

Navigation