Skip to main content
Log in

The blindsight saga

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 20 March 2010

Abstract

Blindsight is the ability of patients with clinically blind field defects, caused by damage to the primary visual cortex V, to detect, localise and even discriminate visual stimuli that they deny seeing. Blindsight tells us much about the nature of visual processing in the absence of the primary visual cortex and is a paradigmatic example of implicit knowledge. It has attracted widespread interest and debate amongst philosophers, cognitive neuropsychologists and visual neuroscientists. Its downside is that possible artefacts abound, much more so than with examples of implicit memory or deaf hearing and numb touch. Unfortunately the artefacts are still frequently ignored, or dismissed as captious, with the result that many of the genuine qualities of blindsight remain uncertain. Now that blindsight in monkeys has been established the substantial literature on the effects of removing parts or all of V1 in monkeys on the residual physiological cerebral responses to visual stimuli in their field defects is at last directly relevant to human blindsight. Whether blindsight is, or could be, useful in everyday life is the next unsolved problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander I, Cowey A (2009) The cortical basis of global motion detection in blindsight. Exp Brain Res 192:407–412

    PubMed  Google Scholar 

  • Azzopardi P, Cowey A (1997) Is blindsight like normal, near-threshold vision? Proc Natl Acad Sci USA 94:14190–14194

    CAS  PubMed  Google Scholar 

  • Azzopardi P, Cowey A (1998) Blindsight and visual awareness. Conscious Cogn 7:292–311

    CAS  PubMed  Google Scholar 

  • Azzopardi P, Cowey A (2002) Cerebral activity related to guessing and attention during a visual detection task. Cortex 38:833–836

    Google Scholar 

  • Azzopardi P, Fallah M, Gross CG, Rodman HR (2003) Response latencies of neurons in visual areas MT and MST of monkeys with striate cortex lesions. Neuropsychologia 41:1738–1756

    PubMed  Google Scholar 

  • Barbur JL, Watson JD, Frachowiak RSJ, Zeki S (1993) Conscious visual perception without V1. Brain 116:1293–1302

    PubMed  Google Scholar 

  • Bender MB, Krieger HP (1951) Visual function in perimetrically blind fields. Arch Neurol Psychiat 65:72–79

    CAS  Google Scholar 

  • Bennett MR, Hacker PMS (2003) Philosophical foundations of neuroscience. Blackwell, Oxford, p 461

    Google Scholar 

  • Benson PJ, Guo L, Blakemore C (1998) Direction discrimination of moving gratings and plaids and coherence of dot displays without primary visual cortex (V1). Eur J NeuroSci 10:3767–3772

    CAS  PubMed  Google Scholar 

  • Blythe IM, Kennard C, Ruddock KH (1987) Residual vision in patients with retrogeniculate lesions of the visual pathways. Brain 110:887–905

    PubMed  Google Scholar 

  • Braddick OJ, Atkinson J, Hood B, Harkness W, Jackson G, Vargha-Khadem F (1992) Possible blindsight in infants lacking one cerebral hemisphere. Nature 360:461–463

    CAS  PubMed  Google Scholar 

  • Bridge H, Thomas O, Jbabdi S, Cowey A (2008) Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 131:1433–1444

    PubMed  Google Scholar 

  • Brindley GS, Gautier-Smith PC, Lewin W (1969) Cortical blindness and the functions of the non-geniculate fibres of the optic tracts. J Neurol Neurosurg Psychiat 32:259–264

    CAS  PubMed  Google Scholar 

  • Brown LE, Kroliczac G, Demonet J-F, Goodale MA (2007) A hand in blindsight: hand placement near target improves size perception in the blind visual field. Neuropsychologia 46:786–802

    PubMed  Google Scholar 

  • Bullier J, Girard P, Salin P-A (1994) The role of area 17 in the transfer of information to extrastriate visual cortex. In: Peters A, Rockland KS (eds) Cer cortex, vol 10. Plenum Press, New York, pp 301–330

    Google Scholar 

  • Buzsaki G (2006) Rythms of the brain. Oxford University Press, Oxford

    Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    CAS  PubMed  Google Scholar 

  • Campion J (2007) Blindsight–Fact or Myth? Psychologist 20:207–208

    Google Scholar 

  • Campion J, Latto R, Smith YM (1983) Is blindsight an effect of scattered light, spared cortex, and near-threshold vision? Behav Brain Sci 3:423–486

    Google Scholar 

  • Chalmers D (1996) The conscious mind: in search of a fundamental theory. Oxford University Press, Oxford

    Google Scholar 

  • Clifford CWG, Arabzadeh E, Harris JA (2008) Getting technical about awareness. Trends Cog Sci 12:54–58

    Google Scholar 

  • Corbetta M, Marzi CA, Tassinari G, Aglioti S (1990) Effectiveness of different task paradigms in revealing blindsight. Brain 113:603–616

    PubMed  Google Scholar 

  • Cowey A (1967) Perimetric study of visual field defects in monkeys after cortical and retinal ablations. Quart J Exp Psychol 19:232–245

    CAS  Google Scholar 

  • Cowey A (1974) Atrophy of retinal ganglion cells after removal of striate cortex in a rhesus monkey. Perception 3:257–260

    CAS  PubMed  Google Scholar 

  • Cowey A (2004) Fact, artefact and myth about blindsight. Quart J Exp Psychol 57A:577–609

    Google Scholar 

  • Cowey A, Azzopardi P (2001) Is blindsight motion blind? In: de Gelder B, de Haan E, Heywood CA (eds) Out of mind. Oxford University Press, Oxford, pp 87–103

    Google Scholar 

  • Cowey A, Stoerig P (1989) Projection patterns of surviving neurons in the dorsal lateral genicualte nucleus following discrete lesions of striate cortex: implications for residual vision. Exp Brain Res 75:631–638

    CAS  PubMed  Google Scholar 

  • Cowey A, Stoerig P (1995) Blindsight in monkeys. Nature 373:247–249

    CAS  PubMed  Google Scholar 

  • Cowey A, Stoerig P (1997) Visual detection in monkeys with blindsight. Neuropsychologia 35:929–939

    CAS  PubMed  Google Scholar 

  • Cowey A, Stoerig P (1999) Spectral sensitivity in hemianopic macaque monkeys. Eur J NeuroSci 11:2114–2120

    CAS  PubMed  Google Scholar 

  • Cowey A, Stoerig P (2003) Stimulus cueing in blindsight. Prog Brain Res 144:261–277

    Google Scholar 

  • Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. NeuroReport 11:3269–3273

    CAS  PubMed  Google Scholar 

  • Cowey A, Weiskrantz L (1963) A perimetric study of visual field defects in monkeys. Quart J Exp Psychol 15:91–115

    Google Scholar 

  • Cowey A, Stoerig P, Perry VH (1989) Transneuronal retrograde degeneration of retinal ganglion cells after damage to striate cortex in macaque monkeys: selective loss of Pß cells. Neuroscience 29:65–80

    CAS  PubMed  Google Scholar 

  • Cowey A, Stoerig P, Bannister M (1994) Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys. Neuroscience 61:691–705

    CAS  PubMed  Google Scholar 

  • Cowey A, Stoerig P, Le Mare C (1998) Effects of unseen stimuli on reaction times to seen stimuli in monkeys with blindsight. Conscious Cogn 7:312–323

    CAS  PubMed  Google Scholar 

  • Cowey A, Stoerig P, Williams C (1999) Variance in transneuronal retrograde ganglion cell degeneration in monkeys after removal of striate cortex: effects of size of the cortical lesion. Vision Res 39:3642–3652

    CAS  PubMed  Google Scholar 

  • Cowey A, Johnson H, Stoerig P (2001) The retinal projection to the pregeniculate nucleus in normal and destriate monkeys. Eur J NeuroSci 13:279–290

    CAS  PubMed  Google Scholar 

  • Dacey DM, Lee BB (1994) The blue-ON opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367:731–735

    CAS  PubMed  Google Scholar 

  • De Gelder B, Vroomen J, Pourtois G, Weiskrantz L (1999) Non-conscious recognition of affect in the absence of striate cortex. NeuroReport 10:3759–3763

    PubMed  Google Scholar 

  • De Gelder B, Vroomen J, Pourtois G (2001) Covert affective cognition and affective blindsight. In: de Gelder B, de Haan E, Heywood CA (eds) Out of mind. Oxford University Press, Oxford, England, pp 205–221

    Google Scholar 

  • De Gelder B, Tamietto M, van Boxtel G, Goebel R, Sahraie A, van den Stock J, Steinen BMC, Weiskrantz L, Pegna A (2009) Intact navigation skills after bilateral loss of striate cortex. Curr Biol 18:R1128–R1129

    Google Scholar 

  • Dienes Z, Scott R (2005) Measuring unconscious knowledge: distinguishing structural knowledge and judgement knowledge. Psychol Res 69:338–351

    PubMed  Google Scholar 

  • Dineen J, Hendrickson A (1981) Age-correlated differences in the amount of retinal degeneration after striate cortex lesions in monkeys. Invest Ophthalmol 21:749–752

    CAS  Google Scholar 

  • Dineen J, Keating EG (1981) The primate visual system after bilateral removal of striate cortex. Survival of complex pattern vision. Exp Brain Res 41:338–345

    CAS  PubMed  Google Scholar 

  • Dineen J, Hendrickson A, Keating EG (1982) Alterations of retinal inputs following striate cortex removal in adult monkey. Exp Brain Res 47:446–456

    CAS  PubMed  Google Scholar 

  • Dodds WJ (1885) On some central affections of vision. Part I. Brain 8:21–39

    Google Scholar 

  • Evans S, Azzopardi P (2007) Evaluation of a ‘bias-free’ measure of awareness. Spat Vis 20:61–77

    PubMed  Google Scholar 

  • Farah MJ, Soso MJ, Dashieff RM (1992) Visual angle of the mind’s eye before and after unilateral occipital lobectomy. J Exp Psychol Hum Percep Perform 18:241–246

    CAS  Google Scholar 

  • Faubert J, Diaconu V (2001) From visual consciousness to spectral absorption in the human retina. Prog Brain Res 134:300–409

    Google Scholar 

  • Faubert J, Diaconu V, Ptito M, Ptito A (1999) Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye. Vision Res 39:149–157

    CAS  PubMed  Google Scholar 

  • ffytche DH, Guy CN, Zeki S (1995) The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain 118:1375–1394

    PubMed  Google Scholar 

  • Goebel R, Muckli L, Zanella FE, Singer W, Stoerig P (2001) Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Res 41:1459–1474

    CAS  PubMed  Google Scholar 

  • Gold I (1999) Does the 40-Hz oscillation play a role in visual consciousness? Conscious Cogn 8:186–195

    CAS  PubMed  Google Scholar 

  • Gonzalez-Andino SL, Grave de Peralta Menendez R, Khateb A, Landis T, Pegna AJ (2009) Electrophysiologicl correlates of affective blindsight. NeuroImage 44:581–589

    Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Hackley SA, Johnson SL (1996) Distinct early and late components of the photic blink relex: I. Response characteristics in patients with retrogeniculate lesions. Pathophysiol 33:239–251

    CAS  Google Scholar 

  • Heide W, Koenig E, Dichgans J (1990) Optokinetic nystagmus, self motion sensation and their after effects in patients with occipito-parietal lesions. Clin Vis Sci 5:145–156

    Google Scholar 

  • Hendry SHC, Reid RC (2000) The koniocellular pathway in primate vision. Ann Rev Neurosci 23:127–153

    CAS  PubMed  Google Scholar 

  • Henriksson L, Raninen A, Näsänen R, Hyvärinen L, Vanni S (2006) Training induced cortical representation of a hemianopic field. J Neurol Neurosurg Psychiat 78:74–81

    PubMed  Google Scholar 

  • Holliday IE, Anderson SJ, Harding GFA (1997) Magnetoencephalographic evidence for non-geniculostriate visual input to human cortical area V5. Neuropsychologia 35:1139–1146

    CAS  PubMed  Google Scholar 

  • Holmes G (1918) Disturbances of vision by cerebral lesions. Brit J Ophthal 2:353–384

    CAS  PubMed  Google Scholar 

  • Horton JC (2005) Disappointing results from NovaVision’s visual restoration therapy. Brit J Ophthalmol 89:1–2

    CAS  Google Scholar 

  • Humphrey NK (1974) Vision in a monkey without striate cortex: a case study. Perception 3:241–255

    CAS  PubMed  Google Scholar 

  • Huxlin KR (2008) Perceptual plasticity in damaged adult visual systems. Vision Res 48:2154–2166

    PubMed  Google Scholar 

  • Huxlin KR, Pasternak T (2004) Training induced recovery of visual motion perception after extrastriate cortical damage in the adult cat. Cer Cortex 14:81–90

    Google Scholar 

  • Huxlin KR, Martin T, Kelly K, Riley M, Friedman DI, Burgin WS, Hayhoe M (2009) Perceptual relearning of complex visual motion after V1 damage in humans. J Neurosci 29:3981–3991

    CAS  PubMed  Google Scholar 

  • Hyman J (1991) Visual experience and blindsight. In: Hyman J (ed) Investigating psychology: sciences of the mind after Wittgenstein. Routledge, London, pp 166–200

    Google Scholar 

  • Innocenti GM, Kiper DC, Knyazeva MG, Deonna TW (1999) Nature and limits of cortical developmental plasticity in a child. J Rest Neurol Neurosci 15:219–227

    CAS  Google Scholar 

  • Jindahra P, Petrie A, Plant GT (2009) Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain. doi:10.1093/brain/awp001)

  • Kasten E, Sabel BA (1995) Visual field enlargement after computer-training in brain-damaged patients with homonymous deficits—an open pilot trial. Rest Neurol Neurosci 8:113–127

    Google Scholar 

  • Kasten E, Wüst S, Behrens-Baumann W, Sabel BA (1998) Computer-based training for the treatment of partial blindness. Nature Med 4:1083–1087

    CAS  PubMed  Google Scholar 

  • Keating EG (1975) Effects of striate and prestriate lesions on the monkey’s ability to locate and discriminate visual forms. Exp Neurol 47:16–25

    CAS  PubMed  Google Scholar 

  • Keating EG (1979) Rudimentary color vision in the monkey after removal of striate and preoccipital cortex. Brain Res 179:379–384

    CAS  PubMed  Google Scholar 

  • Kentridge RW, Heywood CA, Weiskrantz L (1999a) Effects of temporal cueing on residual visual discrimination in blindsight. Neuropsychologia 37:479–483

    CAS  PubMed  Google Scholar 

  • Kentridge RW, Heywood CA, Weiskrantz L (1999b) Attention without awareness in blindsight. Proc Roy Soc Lond B 266:1805–1911

    CAS  Google Scholar 

  • Khalsa SS, Rudrauf D, Sandesara C, Olshansky B, Tranel D (2009) Bolus isoproterenol infusions provide a reliable method for assessing interoceptive awareness. Int J Psychophysiol 72:34–45

    CAS  PubMed  Google Scholar 

  • King SM, Cowey A (1992) Defensive responses to looming visual stimuli in monkeys with unilateral striate cortex ablation. Neuropsychologia 30:1017–1024

    CAS  PubMed  Google Scholar 

  • King SM, Azzopardi P, Cowey A, Oxbury J, Oxbury S (1996) The role of light scatter in the residual visual sensitivity of patients with complete cerebral hemispherectomy. Visual Neurosci 13:1–13

    CAS  Google Scholar 

  • Kiper DC, Zesiger P, Maeder P, Deonna T, Innocenti GM (2002) Vision after early–onset lesions of the occipital cortex: 1. Neuropsychological and psychophysical studies. Neural Plasticity 9:1–25

    CAS  PubMed  Google Scholar 

  • Klüver H (1941) Visual functions after removal of the occipital lobes. J Psychol 11:23–45

    Google Scholar 

  • Kölmel HW (1985) Compex visual hallucinations in the hemianopic field. J Neurol Neurosurg Psychiat 48:293–298

    Google Scholar 

  • Kunimoto C, Miller J, Pashler H (2001) Confidence and accuracy of near-threshold discrimination responses. Conscious Cogn 10:294–340

    CAS  PubMed  Google Scholar 

  • Leporé F, Cardu B, Rasmussen T, Malmo RB (1975) Rod and cone sensitivity in destriate monkeys. Brain Res 93:203–221

    PubMed  Google Scholar 

  • Macmillan NA, Creelman CD (1991) Detection theory: a user’s guide. Cambridge University Press, Cambridge

    Google Scholar 

  • Macphail EM (1998) The evolution of consciousness. Oxford University Press, Oxford

    Google Scholar 

  • Magoun HW, Ranson SW (1935) The central path of the light reflex. Arch Ophthalmol 13:791–811

    Google Scholar 

  • Malmo RB (1966) Effects of striate cortex ablation on intensity discrimination and spectral intensity distribution in the rhesus monkey. Neuropsychologia 4:9–16

    Google Scholar 

  • Marcel AJ (1983) Conscious and unconscious perception: an approach to the relations between phenomenal experience and perceptual processes. Cog Psychol 15:238–300

    CAS  Google Scholar 

  • Marcel AJ (1998) Blindsight and shape perception: deficit of visual consciousness or of visual function? Brain 121:1565–1588

    PubMed  Google Scholar 

  • Marzi CA, Tassinari G, Aglioti S, Lutzemberger L (1986) Spatial summation across the vertical meridian in hemianopics: a test of blindsight. Neuropsychologia 30:783–795

    Google Scholar 

  • Mihailovic LT, Cupic D, Dekleva N (1971) Changes in the number of neurons and glial cells in the lateral geniculate nucleus of the monkey during retrograde cell degeneration. J Comp Neurol 142:223–230

    Google Scholar 

  • Mole C, Kelly S (2006) On the demonstration of blindsight in monkeys. Mind and Language 21:475–483

    Google Scholar 

  • Moore T, Rodman HR, Repp AB, Gross CG (1995) Localization of visual stimuli after striate cortex damage in monkeys: parallels with human blindsight. Proc Natl Acad Sci USA 92:8215–8218

    CAS  PubMed  Google Scholar 

  • Moore T, Rodman HR, Gross CG (1998) Man, monkey and blindsight. Neuroscientist 4:227–230

    Google Scholar 

  • Morris JS, DeGelder B, Weiskrantz L, Dolan RJ (2001) Differential extrageniculate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain 124:1241–1252

    CAS  PubMed  Google Scholar 

  • Murphey DK, Maunsell JHR (2007) Behavioral detection of electrical microstimulation of cortical visual areas. Curr Biol 17:862–867

    CAS  PubMed  Google Scholar 

  • Murphey DK, Maunsell JHR, Beauchamp MS, Yoshor D (2009) Perceiving electrical stimulation of identified human visual areas. Proc Natl Acad Sci USA 106:5389–5393

    CAS  PubMed  Google Scholar 

  • Pasik P, Pasik T (1964) Oculomotor function in monkeys with lesions of the cerebrum and the superior colliculi. In: Bender MB (ed) The oculomotor system. Hoeber, New York, pp 40–80

  • Pasik P, Pasik T (1982) Visual functions in monkeys after total removal of visual cerebral cortex. Contrib Sensory Physiol 7:147–200

    Google Scholar 

  • Pasik P, Pasik T, Schilder P (1969) Extrageniculostriate vision in the monkey: discrimination of luminous flux-equated figures. Exp Neurol 24:421–437

    CAS  PubMed  Google Scholar 

  • Pasik P, Pasik T, Valciukas JA (1970) Nystagmus induced by stationary repetitive light flashes in monkeys. Brain Res 19:313–317

    CAS  PubMed  Google Scholar 

  • Pegna AJ, Khateb A, Lazeyras F, Seghier ML (2005) Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat Neurosci 8:24–25

    CAS  PubMed  Google Scholar 

  • Perenin MT (1991) Discrimination of motion direction in perimetrically blind fields. NeuroReport 2:397–400

    CAS  PubMed  Google Scholar 

  • Perenin MT, Jeannerod M (1975) Residual visual functions in cortically blind hemifields. Neuropsychologia 13:1–7

    CAS  PubMed  Google Scholar 

  • Perenin MT, Rossetti Y (1996) Grasping without form discrimination in a hemianopic field. NeuroReport 7:793–797

    CAS  PubMed  Google Scholar 

  • Perenin MT, Ruel J, Hecaen H (1980) Residual visual capacities in a case of cortical blindness. Cortex 16:605–612

    CAS  PubMed  Google Scholar 

  • Persaud N, Cowey A (2008) Blindsight is unlike normal conscious vision: evidence from an exclusion task. Conscious Cogn 17:1050–1055

    PubMed  Google Scholar 

  • Persaud N, McLeod P, Cowey A (2007) Post-decision wagering objectively measures awareness. Nature Neurosci 10:257–261

    CAS  PubMed  Google Scholar 

  • Pizzamiglio L, Antonucci G, Francia A (1984) Response of the cortically blind hemifields to a moving visual scene. Cortex 20:89–99

    CAS  PubMed  Google Scholar 

  • Pöppel E (1986) Long-range colour-generating interactions across the retina. Nature 320:523–525

    PubMed  Google Scholar 

  • Pöppel E, Frost D, Held R (1973) Residual visual function after brain wounds involving the central visual pathways in man. Nature, London 243:295–296

    Google Scholar 

  • Rafal R, Smith W, Krantz J, Cohen A, Brennan C (1990) Extrageniculate vision in hemianopic humans: saccade inhibition by signals in the blind field. Science 250:118–121

    CAS  PubMed  Google Scholar 

  • Rao A, Nobre AC, Cowey A (2001) Disruption of evoked potentials following a V1 lesion: implications for blindsight. In: De Gelder B, de Haan E, Heywood CA (eds) Out of mind. Oxford University Press, Oxford, pp 69–86

    Google Scholar 

  • Reinhard J, Schreiber A, Schiefer U, Kasten E, Sabel BA, Kenkel S, Vonthein R, Trauzettel-Klosinski S (2005) Does visual restitution training change absolute homonomous visual field defects? A fundus controlled study. Br J Ophthalmol 89:30–35

    CAS  PubMed  Google Scholar 

  • Richards W (1973) Visual processing in scotomata. Exp Brain Res 17:333–347

    CAS  PubMed  Google Scholar 

  • Riddoch G (1917) Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain 40:15–57

    Google Scholar 

  • Rodman HR, Gross CG, Albright TD (1989) Afferent basis of visual response properties in area MT of the macaque: I. effects of striate cortex removal. J Neurosci 9:2033–2050

    CAS  PubMed  Google Scholar 

  • Rodman HR, Gross CG, Albright TD (1990) Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal. J Neurosci 10:1154–1164

    CAS  PubMed  Google Scholar 

  • Rosenblum LD, Gordon M, Jarquin L (2000) Echolocating distance by moving and stationary listeners. Ecol Psychol 12:181–186

    Google Scholar 

  • Sahraie A, Weiskrantz L, Barbur JL, Simmons A, Williams SCR, Brammer MJ (1997) Pattern of neuronal activity associated with conscious and unconscious processing of visual signals. Proc Natl Acad Sci USA 94:9406–9411

    CAS  PubMed  Google Scholar 

  • Sanders MD, Warrington EK, Marshall J, Weiskrantz L (1974) ‘Blindsight’: vision in a field defect. Lancet 1:707–708

    CAS  PubMed  Google Scholar 

  • Schilder P, Pasik P, Pasik T (1971) Extrageniculostriate vision in the monkey. II. Demonstration of brightness discrimination. Brain Res 32:383–389

    CAS  PubMed  Google Scholar 

  • Schilder P, Pasik P, Pasik T (1972) Extrageniculostriate vision in the monkey. III. Circle vs triangle and ‘red vs green’ discrimination. Exp Brain Res 14:436–448

    CAS  PubMed  Google Scholar 

  • Schmid MC, Panagiotaropoulos T, Augath MA, Logothetis NK, Smirnakis SM (2009) Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex. PLoS ONE 4(e5527):1–14

    Article  Google Scholar 

  • Schuett S, Heywood CA, Kentridge RW, Zihl J (2008) Rehabilitation of hemianopic dyslexia: are words necessary for re-learning oculomotor control? Brain 131:3156–3168

    PubMed  Google Scholar 

  • Schurger A, Cowey A, Tallon-Baudry C (2006) Induced gamma-band oscillations correlate with awareness in hemianopic patient GY. Neuropsychologia 44:1796–1803

    PubMed  Google Scholar 

  • Schurger A, Cowey A, Cohen J, Treisman A, Tallon-Baudry C (2008) Distinct and independent correlates of attention and awareness in a hemianopic patient. Neuropsychologia 46:2189–2197

    PubMed  Google Scholar 

  • Schwitzgebel E, Gordon MS (2000) How well do we know our own conscious experience? The case of human echolocation. Philos Topics 28:235–246

    Google Scholar 

  • Silvanto J, Cowey A, Lavie N, Walsh V (2007) Making the blindsighted see. Neuropsychologia 45:3346–3350

    PubMed  Google Scholar 

  • Silvanto J, Cowey A, Walsh V (2008) Inducing conscious perception of colour in blindsight. Curr Biol 18:950–951

    Google Scholar 

  • Silvanto J, Walsh V, Cowey A (2009) Abnormal functional connectivity between ipsilesional V5/MT + and contralesional striate cortex (V1) in blindsight. Exp Brain Res 193:645–650

    PubMed  Google Scholar 

  • Singer W (1993) Synchronisation of cortical activity and its putative role in information processing and learning. Ann Rev Physiol 55:349–374

    CAS  Google Scholar 

  • Stoerig P (2006) Blindsight, conscious vision, and the role of the primary visual cortex. Prog Brain Res 155:217–234

    PubMed  Google Scholar 

  • Stoerig P (2007) Functional rehabilitation of partial cortical blindness. Restorative Neurol Neurosci 25:1–14

    Google Scholar 

  • Stoerig P, Cowey A (1989) Residual target detection as a function of stimulus size. Brain 112:1123–1139

    PubMed  Google Scholar 

  • Stoerig P, Cowey A (1991) Increment-threshold spectral sensitivity in blindsight. Brain 114:1487–1512

    PubMed  Google Scholar 

  • Stoerig P, Cowey A (1992) Wavelength discrimination in blindsight. Brain 115:425–444

    PubMed  Google Scholar 

  • Stoerig P, Cowey A (1997) Blindsight in man and monkey. Brain 120:535–559

    PubMed  Google Scholar 

  • Stoerig P, Cowey A (2009) Blindsight. In: Baynes T, Cleermans A, Wilken P (eds) Oxford companion to consciousness. Oxford University Press, Oxford, pp 112–116

    Google Scholar 

  • Stoerig P, Fahle M (1995) Apparent motion across a scotoma: an implicit test of blindsight. Eur J Neurosci Suppl 8:76

    Google Scholar 

  • Stoerig P, Pöppel E (1986) Eccentricity-dependent residual target detection in visual field defects. Exp Brain Res 64:469–475

    CAS  PubMed  Google Scholar 

  • Stoerig P, Hubner M, Pöppel E (1985) Signal detection analysis of residual vision in a field defect due to a post-geniculate lesion. Neuropsychologia 23:589–599

    CAS  PubMed  Google Scholar 

  • Stoerig P, Zontanou A, Cowey A (2002) Aware or unaware: assessment of cortical blindness in four men and a monkey. Cer Cortex 12:565–574

    Google Scholar 

  • Supa M, Cotzin M, Dallenbach KM (1944) Facial vision: the perception of obstacles by the blind. Am J Psychol 57:133–183

    Google Scholar 

  • ter Braak JG, van Vliet AGM (1963) Sub-cortical optokinetic nystagmus in the monkey. Psychiat Neurol Neurochirurg 66:277–283

    Google Scholar 

  • ter Braak JWG, Schenk VWD, van Vliet AGM (1971) Visual reactions in a case of long-standing cortical blindness. J Neurol Neurosurg Psychiat 34:140–147

    Google Scholar 

  • Theoret H, Boire D, Herbin M, Ptito M (2001) Anatomical sparing in the superior colliculus of hemispherectomized monkeys. Brain Res 16:274–280

    Google Scholar 

  • Tomaiuolo F, Ptito M, Marzi CA, Paus T, Ptito A (1997) Blindsight in hemsipherectomized patients as revealed by spatial summation across the vertical meridian. Brain 120:795–803

    PubMed  Google Scholar 

  • Treisman M (1964) The effect of one stimulus on the threshold of another: an application of signal detectability theory. Brit J Statistical Psychol 17:15–35

    Google Scholar 

  • Trevethan CT, Sahraie A, Weiskrantz L (2007) Can blindsight be superior to ‘sighted sight’? Cognition 103:491–501

    PubMed  Google Scholar 

  • Van Buren JM (1963) Trans-synaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiat 34:140–147

    Google Scholar 

  • Van Hof-van Duin J, Mohn G (1983) Optokinetic and spontaneous nystagmus in children with neurological disorders. Behav Brain Res 10:163–175

    PubMed  Google Scholar 

  • Weiskrantz L (1963) Contour discrimination in a young monkey with striate cortex ablation. Neuropsychologia 1:145–164

    Google Scholar 

  • Weiskrantz L (1987) Residual vision in a scotoma: follow-up study of form discrimination. Brain 110:77–92

    PubMed  Google Scholar 

  • Weiskrantz L (1998) Consciousness and commentaries. In: Towards a science of consciousness II—the second Tucson discussions and debates, M.I.T. Press, Cambridge, pp 371–377

  • Weiskrantz L (2009) Blindsight: a case study spanning 35 years and new developments, 3rd edn. Oxford University Press, Oxford, p 255

    Google Scholar 

  • Weiskrantz L, Warrington EK, Sanders MD, Marshall J (1974) Visual capacity in the hemianopic field following a restricted cortical ablation. Brain 97:709–728

    CAS  PubMed  Google Scholar 

  • Weiskrantz L, Cowey A, Passingham C (1977) Spatial responses to brief stimuli by monkeys with striate cortex ablations. Brain 100:655–670

    CAS  PubMed  Google Scholar 

  • Weiskrantz L, Barbur JL, Sahraie A (1995) Parameters affecting conscious versus unconscious visual discrimination in a patient with damage to the visual cortex (V1). Proc Natl Acad Sci USA 92:6122–6126

    CAS  PubMed  Google Scholar 

  • Weiskrantz L, Cowey A, Barbur JL (1999) Differential pupillary constriction and awareness in the absence of striate cortex. Brain 122:1533–1538

    PubMed  Google Scholar 

  • Weiskrantz L, Rao A, Hodinott-Hill I, Nobre AC, Cowey A (2003) Brain potentials associated with conscious after effects induced by unseen stimuli in a blindsight subject. Proc Nat Acad Sci USA 100:10500–10505

    CAS  PubMed  Google Scholar 

  • Weller RE, Kaas JH (1989) Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates. Vis Neurosci 3:327–342

    CAS  PubMed  Google Scholar 

  • Wilbrand H, Sänger A (1900) Die Neurologie des Auges, vol III. JF Bergmann, Wiesbaden

    Google Scholar 

  • Wilson ME (1967) Spatial and temporal summation in impaired regions of the visual field. J Physiol 189:189–208

    CAS  PubMed  Google Scholar 

  • Zeki S, ffytche DH (1998) The Riddoch syndrome: insights into the neurobiology of conscious vision. Brain 121:25–45

    PubMed  Google Scholar 

  • Zihl J, von Cramon D (1985) Visual field recovery from scotomota in patients with postgeniculate damage. Brain 108:335–365

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a UK Medical Research Council project grant. I am specially grateful to Dr. Iona Alexander for her help with figures and editing. It is a pleasure to acknowledge Dr. Robert Doty and the University of Rochester, New York, for jointly inviting me to present the first Elizabeth Doty Memorial Lecture in 2008, which prompted me to prepare this review. I also thank Charles Heywood for alerting me to the 19th century writings of W.J. Dodds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Cowey.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00221-010-2222-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowey, A. The blindsight saga. Exp Brain Res 200, 3–24 (2010). https://doi.org/10.1007/s00221-009-1914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1914-2

Keywords

Navigation